liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Aronsson, ChristopherORCID iD iconorcid.org/0000-0001-7921-8915
Publications (4 of 4) Show all publications
Christoffersson, J., Aronsson, C., Jury, M., Selegård, R., Aili, D. & Mandenius, C.-F. (2019). Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication, 11(1), Article ID 015013.
Open this publication in new window or tab >>Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device
Show others...
2019 (English)In: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, no 1, article id 015013Article in journal (Refereed) Published
Abstract [en]

Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3Dorientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in theHA backbone, azide-modified cell adhesion motifs (linear and cyclicRGDpeptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclicRGDpeptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
Organ-on-a-chip; biofabrication; bioorthogonal crosslinking; cell-binding motif; microfluidics
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-153971 (URN)10.1088/1758-5090/aaf657 (DOI)000454550900002 ()30523863 (PubMedID)2-s2.0-85059228017 (Scopus ID)
Note

Funding Agencies|EU Innovative Medicines Initiative Joint Undertaking [115439]; European Union; Swedish Research Council (VR) [B0431901]; Swedish Foundation for Strategic Research (SFF) [FFL15-0026]; Carl Trygger Foundation [CTS15:79]; Knut and Alice Wallenberg Foundation [KAW 2016.0231]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

Available from: 2019-01-22 Created: 2019-01-22 Last updated: 2019-02-01Bibliographically approved
Christoffersson, J., Aronsson, C., Jury, M., Selegård, R., Aili, D. & Mandenius, C.-F. (2018). Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication, 11(1), 1-13, Article ID 015013.
Open this publication in new window or tab >>Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device
Show others...
2018 (English)In: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, no 1, p. 1-13, article id 015013Article in journal (Refereed) Published
Abstract [en]

Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3D orientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in the HA backbone, azide-modified cell adhesion motifs (linear and cyclic RGD peptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclic RGD peptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018
National Category
Cell and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Cell Biology
Identifiers
urn:nbn:se:liu:diva-154008 (URN)10.1088/1758-5090/aaf657 (DOI)
Available from: 2019-01-22 Created: 2019-01-22 Last updated: 2019-01-22Bibliographically approved
Dånmark, S., Aronsson, C. & Aili, D. (2016). Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting. Biomacromolecules, 17(6), 2260-2267
Open this publication in new window or tab >>Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting
2016 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, no 6, p. 2260-2267Article in journal (Refereed) Published
Abstract [en]

Physical hydrogels are extensively used in a wide range of biomedical applications. However, different applications require hydrogels with different mechanical and structural properties. Tailoring these properties demands exquisite control over the supramolecular peptides with different affinities for dimerization. Four different mechanical properties of hydrogels using de novo designed coiled coil interactions involved. Here we show that it is possible to control the nonorthogonal peptides, designed to fold into four different coiled coil heterodimers with dissociation constants spanning from mu M to pM, were conjugated to star-shaped 4-arm poly(ethylene glycol) (PEG). The different PEG-coiled coil conjugates self-assemble as a result of peptide heterodimerization. Different combinations of PEG peptide conjugates assemble into PEG peptide networks and hydrogels with distinctly different thermal stabilities, supramolecular, and rheological properties, reflecting the peptide dimer affinities. We also demonstrate that it is possible to rationally modulate the self-assembly process by means of thermodynamic self-sorting by sequential additions of nonpegylated peptides. The specific interactions involved in peptide dimerization thus provides means for programmable and reversible self-assembly of hydrogels with precise control over rheological properties, which can significantly facilitate optimization of their overall performance and adaption to different processing requirements and applications.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2016
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:liu:diva-130135 (URN)10.1021/acs.biomac.6b00528 (DOI)000377924800038 ()27219681 (PubMedID)
Note

Funding Agencies|Swedish Research Council [621-2011-4319]; Swedish Foundation for Strategic Research [ICA10-0002]; Linkoping University; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Available from: 2016-07-12 Created: 2016-07-11 Last updated: 2019-01-22
Aronsson, C., Dånmark, S., Zhou, F., Öberg, P., Enander, K., Su, H. & Aili, D. (2015). Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties. Scientific Reports, 5(14063)
Open this publication in new window or tab >>Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties
Show others...
2015 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, no 14063Article in journal (Refereed) Published
Abstract [en]

Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2015
National Category
Physical Sciences Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-121739 (URN)10.1038/srep14063 (DOI)000361177400001 ()26370878 (PubMedID)
Note

Funding Agencies|Swedish Research Council (VR); Swedish Foundation for Strategic Research (SSF)

Available from: 2015-10-06 Created: 2015-10-05 Last updated: 2019-01-22
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7921-8915

Search in DiVA

Show all publications