liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Hänninen, Tuomas
Publications (5 of 5) Show all publications
Hänninen, T., Schmidt, S., Ivanov, I. G., Jensen, J., Hultman, L. & Högberg, H. (2018). Silicon carbonitride thin films deposited by reactive high power impulse magnetron sputtering. Surface & Coatings Technology, 335, 248-256
Open this publication in new window or tab >>Silicon carbonitride thin films deposited by reactive high power impulse magnetron sputtering
Show others...
2018 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 335, p. 248-256Article in journal (Refereed) Published
Abstract [en]

Amorphous silicon carbonitride thin films for biomedical applications were deposited in an industrial coating unit from a silicon target in different argon/nitrogen/acetylene mixtures by reactive high power impulse magnetron sputtering (rHiPIMS). The effects of acetylene (C2H2) flow rate, substrate temperature, substrate bias voltage, and HiPIMS pulse frequency on the film properties were investigated. Low C2H2 flow rates (<10 sccm) resulted in silicon nitride-like film properties, seen from a dense morphology when viewed in cross-sectional scanning electron microscopy, a hardness up to ∼22 GPa as measured by nanoindentation, and Si-N bonds dominating over Si-C bonds in X-ray photoelectron spectroscopy core-level spectra. Higher C2H2 flows resulted in increasingly amorphous carbon-like film properties, with a granular appearance of the film morphology, mass densities below 2 g/cm3 as measured by X-ray reflectivity, and a hardness down to 4.5 GPa. Increasing substrate temperatures and bias voltages resulted in slightly higher film hardnesses and higher compressive residual stresses. The film H/E ratio showed a maximum at film carbon contents ranging between 15 and 30 at.% and at elevated substrate temperatures from 340 °C to 520 °C.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Magnetron sputtering, Silicon carbonitride, Acetylene, Hardness, H/E
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-145178 (URN)10.1016/j.surfcoat.2017.12.037 (DOI)000424720800028 ()
Funder
EU, FP7, Seventh Framework Programme, GA-310477Carl Tryggers foundation , 15:219; 14:431
Available from: 2018-02-13 Created: 2018-02-13 Last updated: 2018-04-03
Hänninen, T. (2018). Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering. (Doctoral dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C2H2) in addition to N2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated.

The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N2/Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V.

The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride.

The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiNx/CNx structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 58
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1901
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:liu:diva-145177 (URN)10.3384/diss.diva-145177 (DOI)9789176853740 (ISBN)
Public defence
2018-03-09, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2018-02-13 Created: 2018-02-13 Last updated: 2019-09-30Bibliographically approved
Hänninen, T., Schmidt, S., Wissting, J., Jensen, J., Hultman, L. & Högberg, H. (2016). Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS. Journal of Physics D: Applied Physics, 49(13), Article ID 135309.
Open this publication in new window or tab >>Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS
Show others...
2016 (English)In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 49, no 13, article id 135309Article in journal (Refereed) Published
Abstract [en]

Silicon oxynitride (SiOxNy, x = 0.2 − 1.3, y = 0.2 − 0.7) thin films were synthesized by reactive high power impulse magnetron sputtering from a pure silicon target in Ar/N2O atmospheres. It is found that the composition of the material can be controlled by the reactive gas flow and the average target power. X-ray photoelectron spectroscopy (XPS) shows that high average powers result in more silicon-rich films, while lower target powers yield silicon-oxide-like material due to more pronounced target poisoning. The amount of nitrogen in the films can be controlled by the percentage of nitrous oxide in the working gas. The nitrogen content remains at a constant level while the target is operated in the transition region between metallic and poisoned target surface conditions. The extent of target poisoning is gauged by the changes in peak target current under the different deposition conditions. XPS also shows that varying concentrations and ratios of oxygen and nitrogen in the films result in film chemical bonding structures ranging from silicon-rich to stoichiometric silicon oxynitrides having no observable Si−Si bond contributions. Spectroscopic ellipsometry shows that the film optical properties depend on the amount and ratio of oxygen and nitrogen in the compound, with film refractive indices measured at 633 nm ranging between those of SiO2 and Si3N4.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2016
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-123382 (URN)10.1088/0022-3727/49/13/135309 (DOI)000371908800023 ()
Note

Funding agencies:  Carl Tryggers Foundation for Scientific Research; European Union under the LifeLongJoints Project [GA-310477]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2018-02-13Bibliographically approved
Hänninen, T., Schmidt, S., Jensen, J., Hultman, L. & Högberg, H. (2015). Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor. Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, 33(5), 05E121
Open this publication in new window or tab >>Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor
Show others...
2015 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 33, no 5, p. 05E121-Article in journal (Refereed) Published
Abstract [en]

Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Place, publisher, year, edition, pages
A V S AMER INST PHYSICS, 2015
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-121906 (URN)10.1116/1.4927493 (DOI)000361229000021 ()
Note

Funding Agencies|European Union [GA-310477]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2015-10-13 Created: 2015-10-12 Last updated: 2018-02-13
Hänninen, T. (2015). Silicon Oxynitride Thin Films Grown by Reactive HiPIMS. (Licentiate dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Silicon Oxynitride Thin Films Grown by Reactive HiPIMS
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Amorphous silicon oxynitride (SiOxNy) thin films were grown by reactive high power impulse magnetron sputtering from a pure silicon target in Ar/N2O plasmas. The elemental composition of the films was shown to depend on the target surface conditions during the film deposition, as well as on the reactive gas flow rate. When the target was sputtered under poisoned surface conditions, the film composition was predominantly silicon oxide, whereas films deposited in the transition regime between poisoned and metallic target surface conditions showed higher nitrogen concentrations, as measured by X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA). The different target surface conditions were identified based on the evolution of the target current waveforms upon variation of the deposition parameters. The average electron temperatures during the peak target current were determined by Langmuir probe measurements, to assist with the explanation of the observed target current behavior and target poisoning characteristics.

The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, the refractive index n and the extinction coefficient k, were shown to depend on the film chemical bonding, with the effectively stoichiometric films displaying optical properties falling between those of SiO2 and Si3N4.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. p. 30
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1737
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-123383 (URN)10.3384/lic.diva-123383 (DOI)978-91-7685-879-0 (ISBN)
Presentation
2016-01-22, Jordan-Fermi, J402, Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, FP7/2007-2013Swedish Foundation for Strategic Research , SFO-Mat-LiU No. 2009-00971
Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2019-11-18Bibliographically approved
Organisations

Search in DiVA

Show all publications