liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
Sherrell, Peter
Publications (2 of 2) Show all publications
Sherrell, P., Cieślar-Pobuda, A., Silverå Ejneby, M., Sammalisto, L., Gelmi, A., de Muinck, E., . . . Rafat, M. (2017). Rational Design of a Conductive Collagen Heart Patch. Macromolecular Bioscience, 17(7), Article ID 1600446.
Open this publication in new window or tab >>Rational Design of a Conductive Collagen Heart Patch
Show others...
2017 (English)In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 17, no 7, article id 1600446Article in journal (Refereed) Published
Abstract [en]

Cardiovascular diseases, including myocardial infarction, are the cause of significant morbidity and mortality globally. Tissue engineering is a key emerging treatment method for supporting and repairing the cardiac scar tissue caused by myocardial infarction. Creating cell supportive scaffolds that can be directly implanted on a myocardial infarct is an attractive solution. Hydrogels made of collagen are highly biocompatible materials that can be molded into a range of shapes suitable for cardiac patch applications. The addition of mechanically reinforcing materials, carbon nanotubes, at subtoxic levels allows for the collagen hydrogels to be strengthened, up to a toughness of 30 J m-1 and a two to threefold improvement in Youngs' modulus, thus improving their viability as cardiac patch materials. The addition of carbon nanotubes is shown to be both nontoxic to stem cells, and when using single-walled carbon nanotubes, supportive of live, beating cardiac cells, providing a pathway for the further development of a cardiac patch.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2017
Keywords
Carbon nanotube, Collagen, Hydrogel, Myocardial infarction, Stem cell
National Category
Medical Engineering
Identifiers
urn:nbn:se:liu:diva-136817 (URN)10.1002/mabi.201600446 (DOI)000405566300004 ()28322510 (PubMedID)2-s2.0-85016390421 (Scopus ID)
Note

Funding agencies: Linkoping Initiative in Life Science Technologies (LIST); Central ALF Matching Grant from Landstinget i Ostergotland [LIO-344071]; European Research Agency [304209]; GeCONiI [POIG.02.03.01-24-099/13]

Available from: 2017-04-27 Created: 2017-04-27 Last updated: 2024-01-10Bibliographically approved
Rafat, M., Xeroudaki, M., Koulikovska, M., Sherrell, P., Groth, F., Fagerholm, P. & Lagali, N. (2016). Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials, 83, 142-155
Open this publication in new window or tab >>Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications
Show others...
2016 (English)In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 83, p. 142-155Article in journal (Refereed) Published
Abstract [en]

Scarcity of donor tissue to treat corneal blindness and the need to deliver stem cells or pharmacologic agents to ensure corneal graft survival are major challenges. Here, new composite collagen-based hydrogels are developed as implants to restore corneal transparency while serving as a possible reservoir for cells and drugs. The composite hydrogels have a centrally transparent core and embedded peripheral skirt of adjustable transparency and degradability, with the skirt exhibiting faster degradation in vitro. Both core and skirt supported human epithelial cell populations in vitro and the skirt merged homogeneously with the core material to smoothly distribute a mechanical load in vitro. After in vivo transplantation in rabbit corneas over three months, composites maintained overall corneal shape and integrity, while skirt degradation could be tracked in vivo and non-invasively due to partial opacity. Skirt degradation was associated with partial collagen breakdown, thinning, and migration of host stromal cells and macrophages, while the central core maintained integrity and transparency as host cells migrated and nerves regenerated.

IMPACT:

This study indicates the feasibility of a collagen-based composite hydrogel to maintain corneal stability and transparency while providing a degradable peripheral reservoir for cell or substance release.

Keywords
Composite; Cornea; Degradation; Femtosecond laser; Keratoplasty; Porcine collagen
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-125229 (URN)10.1016/j.biomaterials.2016.01.004 (DOI)000371651700012 ()26773670 (PubMedID)
Note

Funding agencies:  Abbott Medical Optics Inc, Solna, Sweden

Available from: 2016-02-16 Created: 2016-02-16 Last updated: 2022-10-27
Organisations

Search in DiVA

Show all publications