Open this publication in new window or tab >>2019 (English)In: Frontiers in Neuroinformatics, E-ISSN 1662-5196, Vol. 13, article id 43Article in journal (Refereed) Published
Abstract [en]
Purpose: Estimation of uncertainty of MAP-MRI metricsis an important topic, for several reasons. Bootstrap deriveduncertainty, such as the standard deviation, providesvaluable information, and can be incorporated in MAP-MRIstudies to provide more extensive insight.
Methods: In this paper, the uncertainty of different MAPMRImetrics was quantified by estimating the empirical distributionsusing the wild bootstrap. We applied the wildbootstrap to both phantom data and human brain data, andobtain empirical distributions for theMAP-MRImetrics returnto-origin probability (RTOP), non-Gaussianity (NG) and propagatoranisotropy (PA).
Results: We demonstrated the impact of diffusion acquisitionscheme (number of shells and number of measurementsper shell) on the uncertainty of MAP-MRI metrics.We demonstrated how the uncertainty of these metrics canbe used to improve group analyses, and to compare differentpreprocessing pipelines. We demonstrated that withuncertainty considered, the results for a group analysis canbe different.
Conclusion: Bootstrap derived uncertain measures provideadditional information to the MAP-MRI derived metrics, andshould be incorporated in ongoing and future MAP-MRIstudies to provide more extensive insight.
Place, publisher, year, edition, pages
Frontiers Media S.A., 2019
Keywords
Bootstrap, diffusion MRI, MAP-MRI, uncertainty, RtoP, NG, PA
National Category
Medical Engineering
Identifiers
urn:nbn:se:liu:diva-157089 (URN)10.3389/fninf.2019.00043 (DOI)000471589200001 ()31244637 (PubMedID)
Note
Funding agencies: Swedish Research Council [2015-05356]; Linkoping University Center for Industrial Information Technology (CENIIT); Knut and Alice Wallenberg Foundation project Seeing Organ Function; National Institute of Dental and Craniofacial Research (NIDCR); National
2019-05-272019-05-272024-01-17