liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Wang, Chuanfei
Publications (5 of 5) Show all publications
Wang, C., Ni, S., Braun, S., Fahlman, M. & Liu, X. (2019). Effects of water vapor and oxygen on non-fullerene small molecule acceptors. Journal of Materials Chemistry C, 7(4), 879-886
Open this publication in new window or tab >>Effects of water vapor and oxygen on non-fullerene small molecule acceptors
Show others...
2019 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 4, p. 879-886Article in journal (Refereed) Published
Abstract [en]

Due to the rapid development of non-fullerene acceptors (NFAs), the efficiency of organic solar cells is steadily being improved. The stability of organic solar cells also is expected to be enhanced with the introduction of the NFAs, yet the stability of NFAs themselves have been less investigated to date. In this paper, the stability of a set of typical NFAs was studied in situ employing photoelectron spectroscopy. The studied molecules show higher resistance to water vapor and thermal stress compared to fullerenes. For water vapor exposure, the highest occupied molecular orbital (HOMO) of NFAs undergoes only minor and reversible changes and the NFAs/substrate work function stays constant. Exposure to oxygen gas significantly modified the electronic structure of the NFAs and the effect was only partially reversible by annealing. However, the presence of water vapor was shown to slow down the degradation caused by oxygen. This is in stark contrast to fullerenes that undergo irreversible degradation upon water vapor exposure.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Condensed Matter Physics Nano Technology
Identifiers
urn:nbn:se:liu:diva-154288 (URN)10.1039/C8TC05475D (DOI)000459571400007 ()2-s2.0-85060595857 (Scopus ID)
Note

Funding agencies: Knut and Alice Wallenberg Foundation project "Tail of the Sun; Swedish Research Council [2016-05498]; Swedish Foundation for Strategic Research [SE13-0060]; Ministry of Science and Technology [2016YFA0200700]; NSFC [21504066, 21534003]; Swedish Energy Age

Available from: 2019-02-01 Created: 2019-02-01 Last updated: 2019-03-20Bibliographically approved
Wang, C., Ouyang, L., Xu, X., Braun, S., Liu, X. & Fahlman, M. (2018). Relationship of Ionization Potential and Oxidation Potential of Organic Semiconductor Films Used in Photovoltaics. Solar RRL, 2(9)
Open this publication in new window or tab >>Relationship of Ionization Potential and Oxidation Potential of Organic Semiconductor Films Used in Photovoltaics
Show others...
2018 (English)In: Solar RRL, ISSN 2367-198X, Vol. 2, no 9Article in journal (Refereed) Published
Abstract [en]

Ultraviolet photoelectron spectroscopy (UPS) and cyclic voltammetry (CV) are employed to measure energy levels for charge transport in organic semiconductor films. A series of classical molecules/polymers used in organic bulk heterojunction solar cells are deposited on platinum substrates/electrodes to form thin films and a linear relationship of vertical ionization potential (IP) measured by UPS and relative oxidation potential (Eox) obtained by CV is found, with a slope equal to unity. The intercept varies with the different reference redox couples and repeated potential sweep numbers during experiment processes. The relationship provides for an easy conversion of values obtained by the two techniques and correlates well with device parameters. The precision in the CV-derived IP values is not sufficient, however, to enable precise design of energy level alignment at heterojunction and the approach does not improve upon the current ?best practice? for obtaining donor ionization potential?acceptor electron affinity gaps at heterojunctions.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2018
Keywords
cyclic voltammetry, ionization potential, linear relationship, organic photovoltaics, oxidation potential, semiconductor films, UV photoelectron spectroscopy
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-151711 (URN)10.1002/solr.201800122 (DOI)000443972900011 ()
Funder
Swedish Foundation for Strategic Research , SE13‐0060Knut and Alice Wallenberg FoundationSwedish Research Council, 2016‐05498Linköpings universitet, 2009 00971Göran Gustafsson Foundation for Research in Natural Sciences and Medicine
Available from: 2018-10-03 Created: 2018-10-03 Last updated: 2018-10-10Bibliographically approved
Wang, C. (2017). Electronic Structure of π-Conjugated Materials and Their Effect on Organic Photovoltaics. (Doctoral dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Electronic Structure of π-Conjugated Materials and Their Effect on Organic Photovoltaics
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The great tunability of structure and electronic properties of π-conjugated organic molecules/polymers combined with other advantages such as light weight and flexibility etc., have made organic-based electronics the focus of an exciting still-growing field of physics and chemistry for more than half a century. The application of organic electronics has led to the appearance of wide range of organic electronic devices mainly including organic light emitting diodes (OLED), organic field effect transistors (OFET) and organic solar cells (OSC). The application of the organic electronic devices mainly is limited by two dominant parameters, i.e., their performance and stability. Up to date, OLED has been successfully commercialized in the market while the OSC are still on the way to commercialization hindered by low efficiency and inferior stability. Understanding the energy levels of organic materials and energy level alignment of the devices is crucial to control the efficiency and stability of the OSC. In this thesis, energy levels measured by different methods are studied to explore their relationship with device properties, and the strategies on how to design efficient and stable OSC based on energy level diagrams are provided.

Cyclic Voltammetry (CV) is a traditional and widely used method to probe the energy levels of organic materials, although there is little consensus on how to relate the oxidation/reduction potential ((Eox/Ered) to the vacuum level. Ultraviolet Photoelectron Spectroscopy (UPS) can be used to directly detect vertical ionization potential (IP) of organic materials. In this thesis, a linear relationship of IP and Eox was found, with a slope equal to unity. The relationship provides for easy conversion of values obtained by the two techniques, enabling complementarily use in designing and fabricating efficient and stable OSC. A popular rule of thumb is that the offset between the LUMO levels of donor and acceptor should be 0.3 eV, according to which a binary solar cell with the minimum voltage losses around 0.49 V was designed here.

Introduction of the ternary blend as active layer is an efficient way to improve both efficiency and stability of the OSC. Based on our studied energy-level diagram within the integer charge transfer (ICT) model, we designed ternary solar cells with enhanced open circuit voltage for the first time and improved thermal stability compared to reference binary ones. The ternary solar cell with minimum voltage losses was developed by combining two donor materials with same ionization potential and positive ICT energy while featuring complementary optical absorption. Furthermore, the fullerene acceptor was chosen so that the energy of the positive ICT state of the two donor polymers is equal to the energy of negative ICT state of the fullerene, which can enhance dissociation of all polymer donor and fullerene acceptor excitons and suppress bimolecular and trap-assistant recombination.

Rapid development of non-fullerene acceptors in the last two years affords more recipes of designing both efficient and stabile OSC. We show in this thesis how non-fullerene acceptors successfully can be used to design ternary solar cells with both enhanced efficiency and thermal stability. Besides improving the efficiency of the devices, understanding of the stability and degradation mechanism is another key issue. The degradation of conjugated molecules/polymers often follow many complicated pathways and at the same time many factors for degradation are coupled with each other. Therefore, the degradation of non-fullerene acceptors was investigated in darkness by photoelectron spectroscopy in this thesis with the in-situ method of controlling exposure of O2 and water vapor separately.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. p. 84
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1893
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Condensed Matter Physics Physical Chemistry
Identifiers
urn:nbn:se:liu:diva-143025 (URN)10.3384/diss.diva-143025 (DOI)9789176853931 (ISBN)
Public defence
2017-12-08, Schrödinger, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2019-10-12Bibliographically approved
Wang, C., Zhang, W., Meng, X., Bergqvist, J., Liu, X., Genene, Z., . . . Fahlman, M. (2017). Ternary Organic Solar Cells with Minimum Voltage Losses. Advanced Energy Materials, 7(21), Article ID 1700390.
Open this publication in new window or tab >>Ternary Organic Solar Cells with Minimum Voltage Losses
Show others...
2017 (English)In: Advanced Energy Materials, ISSN 1614-6840, Vol. 7, no 21, article id 1700390Article in journal (Refereed) Published
Abstract [en]

A new strategy for designing ternary solar cells is reported in this paper. A low-bandgap polymer named PTB7-Th and a high-bandgap polymer named PBDTTS-FTAZ sharing the same bulk ionization potential and interface positive integer charge transfer energy while featuring complementary absorption spectra are selected. They are used to fabricate efficient ternary solar cells, where the hole can be transported freely between the two donor polymers and collected by the electrode as in one broadband low bandgap polymer. Furthermore, the fullerene acceptor is chosen so that the energy of the positive integer charge transfer state of the two donor polymers is equal to the energy of negative integer charge transfer state of the fullerene, enabling enhanced dissociation of all polymer donor and fullerene acceptor excitons and suppressed bimolecular and trap assistant recombination. The two donor polymers feature good miscibility and energy transfer from high-bandgap polymer of PBDTTS-FTAZ to low-bandgap polymer of PTB7-Th, which contribute to enhanced performance of the ternary solar cell.

Place, publisher, year, edition, pages
John Wiley & Sons, 2017
Keywords
binary equivalent, minimum voltage losses, same bulk and interface energy, ternary solar cells
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:liu:diva-143026 (URN)10.1002/aenm.201700390 (DOI)000414711100002 ()2-s2.0-85025441174 (Scopus ID)
Note

Funding agencies: Knut and Alice Wallenberg Foundation; Swedish Research Council [2016-05498]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO Mat LiU) [2009 00971]; Goran Gustafsson Foundat

Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2017-12-05Bibliographically approved
Xu, X., Wang, C., Backe, O., James, D. I., Bini, K., Olsson, E., . . . Wang, E. (2015). Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. Polymer Chemistry, 6(25), 4624-4633
Open this publication in new window or tab >>Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages
Show others...
2015 (English)In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 6, no 25, p. 4624-4633Article in journal (Refereed) Published
Abstract [en]

A new electron-deficient building block 5,9-di(thiophen-2-yl)-6H-pyrrolo[3,4-g]quinoxaline-6,8(7H)-dione (PQD) was synthesized via functionalizing the 6- and 7-positions of quinoxaline (Qx) with a dicarboxylic imide moiety. Side chain substitution on the PQD unit leads to good solubility which enables very high molecular weight copolymers to be attained. The fusion of two strong electron-withdrawing groups (Qx and dicarboxylic imide) makes the PQD unit a stronger electron-deficient moiety than if the unit had just one electron-withdrawing group, thus enhancing the intramolecular charge transfer between electron-rich and deficient units of the copolymer. Four PQD-based polymers were synthesized which feature deep-lying highest occupied molecular orbital (HOMO) levels and bathochromic absorption spectra when compared to PBDT-Qx and PBDT-TPD analogues. The copolymers incorporated with benzo[1,2-b:4,5-b]dithiophene (BDT) units show that the 1D and 2D structural variations of the side groups on the BDT unit are correlated with the device performance. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer: PC71BM/LiF/Al) based on the four copolymers feature very high open-circuit voltages (V-oc) of around 1.0 V. The copolymer PBDT-PQD1 attains the best power conversion efficiency of 4.9%, owing to its relatively high absorption intensity and suitable film morphology. The structure-property correlation demonstrates that the new PQD unit is a promising electron-deficient building block for efficient photovoltaic materials with high V-oc.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2015
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-120071 (URN)10.1039/c5py00394f (DOI)000356298900009 ()
Note

Funding Agencies|Swedish Research Council; Swedish Energy Agency; EU [287594]; China Scholarship Council; program for the Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114]

Available from: 2015-07-06 Created: 2015-07-06 Last updated: 2017-11-15
Organisations

Search in DiVA

Show all publications