liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Wärner, Hugo
Publications (7 of 7) Show all publications
Calmunger, M., Wärner, H., Chai, G., Johansson, S. & Moverare, J. (2019). High Temperature Properties of Austenitic Stainless Steels for Future Power Plant Applications. In: : . Paper presented at EUROMAT19, Stockholm 2-5 September 2019.
Open this publication in new window or tab >>High Temperature Properties of Austenitic Stainless Steels for Future Power Plant Applications
Show others...
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-162815 (URN)
Conference
EUROMAT19, Stockholm 2-5 September 2019
Available from: 2019-12-19 Created: 2019-12-19 Last updated: 2019-12-19
Wärner, H., Eriksson, R., Chai, G., Moverare, J., Johansson, S. & Calmunger, M. (2019). Influence of Ageing on Thermomechaical Fatigue of Austenitic Stainless Steels. In: Elsevier (Ed.), Structural Integrity Procedia: . Paper presented at 9th International Conference on Materials Structures and Micromechanics of Fracture, MSMF9, in Brno, Czech Republic, June 26-28, 2019. Elsevier
Open this publication in new window or tab >>Influence of Ageing on Thermomechaical Fatigue of Austenitic Stainless Steels
Show others...
2019 (English)In: Structural Integrity Procedia / [ed] Elsevier, Elsevier, 2019Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Thermomechanical fatigue, Austenitic stainless steels, Ageing, Barrelling effect
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-161737 (URN)
Conference
9th International Conference on Materials Structures and Micromechanics of Fracture, MSMF9, in Brno, Czech Republic, June 26-28, 2019
Available from: 2019-11-08 Created: 2019-11-08 Last updated: 2019-11-12
Wärner, H., Calmunger, M., Chai, G. & Moverare, J. (2019). Microscopic Evaluation of Creep-Fatigue Interaction in Heat Resistant Austenic Alloys. In: : . Paper presented at EUROMAT19, Stockholm 2-5 September 2019.
Open this publication in new window or tab >>Microscopic Evaluation of Creep-Fatigue Interaction in Heat Resistant Austenic Alloys
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-162817 (URN)
Conference
EUROMAT19, Stockholm 2-5 September 2019
Available from: 2019-12-19 Created: 2019-12-19 Last updated: 2019-12-19
Wärner, H., Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2019). Structural Integrity and Impact Toughness of Austenitic Stainless Steels. In: Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials: . Paper presented at 13th International Conference on the Mechanical Behaviour of Materials (ICM13), 11-14 June 2019, Melbourne, Australia.
Open this publication in new window or tab >>Structural Integrity and Impact Toughness of Austenitic Stainless Steels
Show others...
2019 (English)In: Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials, 2019Conference paper, Published paper (Refereed)
Keywords
Austenitic stainless steels, long-term ageing, impact toughness, fracture mechanisms
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-162679 (URN)978-1-922016-65-2 (ISBN)
Conference
13th International Conference on the Mechanical Behaviour of Materials (ICM13), 11-14 June 2019, Melbourne, Australia
Available from: 2019-12-16 Created: 2019-12-16 Last updated: 2019-12-16
Wärner, H., Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2019). Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys. International Journal of Fatigue (127), 509-521
Open this publication in new window or tab >>Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys
Show others...
2019 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, no 127, p. 509-521Article in journal (Refereed) Published
Abstract [en]

The increasing demands for efficiency and flexibility result in more severe operating conditions for the materials used in critical components of biomass power plants. These operating conditions involve higher temperature ranges, more pronounced environmental effects and cyclic operations. Austenitic stainless steels have shown to possess promising high temperature properties which makes them suitable as candidates for critical components in biomass power plant. However, their behaviour under such conditions is not yet fully understood. This work investigates three commercial austenitic alloys: Esshete 1250, Sanicro 25 and Sanicro 31HT. The alloys were subjected to in-phase (IP) thermomechanical fatigue (TMF) testing under strain-control in the temperature range of 100–800 °C. Both virgin and pre-aged TMF specimens were tested in order to simulate service degradation resulting from long-term usage. The results show that the pre-aged specimens suffered shorter TMF-life compared to the virgin specimens. The scanning electron microscopy methods electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were used to analyse and discuss active failure and deformation mechanisms. The difference in TMF-life produced by the two testing conditions was attributed to an embrittling effect by precipitation, reduced creep properties and oxidation assisted cracking.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Thermomechanical fatigue, austenitic alloys, pre-ageing
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-159644 (URN)10.1016/j.ijfatigue.2019.06.012 (DOI)000482492600046 ()2-s2.0-85068255817 (Scopus ID)
Note

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish Energy Agency through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]

Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-10-16Bibliographically approved
Wärner, H., Calmunger, M., Chai, G. & Moverare, J. (2018). Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys. In: EDP Sciences (Ed.), MATEC Web of Conferences 165 , 05001 (2018): . Paper presented at Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France. EDP Sciences, 165
Open this publication in new window or tab >>Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys
2018 (English)In: MATEC Web of Conferences 165 , 05001 (2018) / [ed] EDP Sciences, EDP Sciences, 2018, Vol. 165Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
EDP Sciences, 2018
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-148182 (URN)10.1051/matecconf/2018165505001 (DOI)
Conference
Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-11-27
Wärner, H. (2018). High-Temperature Fatigue Behaviour of Austenitic Stainless Steel: Influence of Ageing on Thermomechanical Fatigue and Creep-Fatigue Interaction. (Licentiate dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>High-Temperature Fatigue Behaviour of Austenitic Stainless Steel: Influence of Ageing on Thermomechanical Fatigue and Creep-Fatigue Interaction
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The global energy consumption is increasing and together with global warming from greenhouse gas emission, create the need for more environmental friendly energy production processes. Higher efficiency of biomass power plants can be achieved by increasing temperature and pressure in the boiler section and this would increase the generation of electricity along with the reduction in emission of greenhouse gases e.g. CO2. The power generation must also be flexible to be able to follow the demands of the energy market, this results in a need for cyclic operating conditions with alternating output and multiple start-ups and shut-downs.

Because of the demands of flexibility, higher temperature and higher pressure in the boiler section of future biomass power plants, the demands on improved mechanical properties of the materials of these components are also increased. Properties like creep strength, thermomechanical fatigue resistance and high temperature corrosion resistance are critical for materials used in the next generation biomass power plants. Austenitic stainless steels are known to possess such good high temperature properties and are relatively cheap compared to the nickel-base alloys, which are already operating at high temperature cyclic conditions in other applications. The behaviour of austenitic stainless steels during these widened operating conditions are not yet fully understood.

The aim of this licentiate thesis is to increase the knowledge of the mechanical behaviour at high temperature cyclic conditions for austenitic stainless steels. This is done by the use of thermomechanical fatigue- and creepfatigue testing at elevated temperatures. For safety reasons, the effect of prolonged service degradation is investigated by pre-ageing before mechanical testing. Microscopy is used to investigate the microstructural development and resulting damage behaviour of the austenitic stainless steels after testing. The results show that creep-fatigue interaction damage, creep damage and oxidation assisted cracking are present at high temperature cyclic conditions. In addition, simulated service degradation resulted in a detrimental embrittling effect due to the deterioration by the microstructural evolution.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 32
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1824
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:liu:diva-153100 (URN)10.3384/lic.diva-153100 (DOI)9789176851746 (ISBN)
Presentation
2018-12-14, ACAS, A-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, KME-701
Available from: 2018-11-27 Created: 2018-11-27 Last updated: 2019-10-12Bibliographically approved
Organisations

Search in DiVA

Show all publications