liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Mäkie, Peter
Publications (2 of 2) Show all publications
Atakan, A., Erdtman, E., Mäkie, P., Ojamäe, L. & Odén, M. (2018). Time evolution of the CO2 hydrogenation to fuels over Cu-Zr-SBA-15 catalysts. Journal of Catalysis, 362, 55-64
Open this publication in new window or tab >>Time evolution of the CO2 hydrogenation to fuels over Cu-Zr-SBA-15 catalysts
Show others...
2018 (English)In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 362, p. 55-64Article in journal (Refereed) Published
Abstract [en]

Time evolution of catalytic CO2 hydrogenation to methanol and dimethyl ether (DME) has been investigated in a high-temperature high-pressure reaction chamber where products accumulate over time. The employed catalysts are based on a nano-assembly composed of Cu nanoparticles infiltrated into a Zr doped SiOx mesoporous framework (SBA-15): Cu-Zr-SBA-15. The CO2 conversion was recorded as a function of time by gas chromatography-mass spectrometry (GC-MS) and the molecular activity on the catalyst’s surface was examined by diffuse reflectance in-situ Fourier transform infrared spectroscopy (DRIFTS). The experimental results showed that after 14 days a CO2 conversion of 25% to methanol and DME was reached when a DME selective catalyst was used which was also illustrated by thermodynamic equilibrium calculations. With higher Zr content in the catalyst, greater selectivity for methanol and a total 9.5% conversion to methanol and DME was observed, yielding also CO as an additional product. The time evolution profiles indicated that DME is formed directly from methoxy groups in this reaction system. Both DME and methanol selective systems show the thermodynamically highest possible conversion.

Keywords
Cu-Zr-SBA-15, CO2 hydrogenation, Catalysis, Time evolution, Thermodynamics, Methanol, Dimethyl ether
National Category
Nano Technology Physical Chemistry
Identifiers
urn:nbn:se:liu:diva-147297 (URN)10.1016/j.jcat.2018.03.023 (DOI)000432770900007 ()
Note

Funding agencies: EUs Erasmus-Mundus program (The European School of Materials Doctoral Programme - DocMASE); Knut och Alice Wallenbergs Foundation [KAW 2012.0083]; Swedish Government Strategic Research Area (SFO Mat LiU) [2009 00971]; Swedish Energy Agency [42022-1]

Available from: 2018-04-16 Created: 2018-04-16 Last updated: 2018-06-14Bibliographically approved
Atakan, A., Mäkie, P., Söderlind, F., Keraudy, J., Johansson, E. & Odén, M. (2017). Synthesis of a Cu-infiltrated Zr-doped SBA-15 catalyst for CO2 hydrogenation into methanol and dimethyl ethert. Physical Chemistry, Chemical Physics - PCCP, 19(29), 19139-19149
Open this publication in new window or tab >>Synthesis of a Cu-infiltrated Zr-doped SBA-15 catalyst for CO2 hydrogenation into methanol and dimethyl ethert
Show others...
2017 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 29, p. 19139-19149Article in journal (Refereed) Published
Abstract [en]

A catalytically active nanoassembly comprising Cu-nanoparticles grown on integrated and active supports (large pore Zr-doped mesoporous SBA-15 silica) has been synthesized and used to promote CO2 hydrogenation. The doped mesoporous material was synthesized using a sal-gel method, in which the pore size was tuned between 11 and 15 nm while maintaining a specific surface area of about 700 m(2) g (1). The subsequent Cu nanoparticle growth was achieved by an infiltration process involving attachment of different functional groups on the external and internal surfaces of the mesoporous structure such that 7-10 nm sized Cu nanoparticles grew preferentially inside the pores. Chemisorption showed improved absorption of both CO2 and H-2 for the assembly compared to pure SBA-15 and 15% of the total CO2 was converted to methanol and dimethyl ether at 250 degrees C and 33 bar.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2017
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-139804 (URN)10.1039/c7cp03037a (DOI)000406334300033 ()28702581 (PubMedID)
Note

Funding Agencies|EUs Erasmus-Mundus program; Swedish Research Council; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 11 2009-00971]; Knut och Alice Wallenbergs Foundation [KAW 2012.0083]

Available from: 2017-08-17 Created: 2017-08-17 Last updated: 2018-04-16
Organisations

Search in DiVA

Show all publications