liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
Publications (10 of 10) Show all publications
Thollander, P., Wallén, M., Björk, C., Johnsson, S., Haraldsson, J., Andersson, E., . . . Jalo, N. (2021). Energinyckeltal och växthusgasutsläpp baserade på industrins energianvändande processer. Stockholm: Naturvårdsverket
Open this publication in new window or tab >>Energinyckeltal och växthusgasutsläpp baserade på industrins energianvändande processer
Show others...
2021 (Swedish)Report (Refereed)
Abstract [sv]

Svensk industri bör strategiskt arbeta mot ökad energi- och resurseffektivitet på en global marknad med knappare resurser. I detta sammanhang spelar beslutsunderlag och nyckeltal en central roll för att nå ökad effektivitet. Även för tillsynsmyndigheter är rättvisande nyckeltal avseende slutenergianvändning av mycket stor vikt för att kunna bedriva ett rättvist förebyggande och proaktivt arbete med svenska företag. De nyckeltal som finns på internationell och nationell nivå är baserade på tillförd energi och ofta relaterade till en ekonomisk output, till exempel förädlingsvärde. Det saknas emellertid nyckeltal kring slutenergianvändningen inom svensk industri fördelat på energibärare såsom el och olja och fördelat på slutenergiprocesser såsom ugnar, tryckluftskompressorer, etc. De siffror som ibland anges är baserade på grova uppskattningar. Projektets mål har därför varit att generera ett processträd avseende flera av de största, till slutenergianvändning räknat, svenska industribranscherna avseende hur slutenergianvändningen är fördelad på processnivå och olika energibärare, samt att allokera växthusgasutsläpp på dessa olika processer. Resultaten indikerar att nyckeltal baserade på energianvändning och indirekta växthusgasutsläpp på processnivå kan bidra till bättre kunskap om i vilka industriella energianvändande processer den största potentialen för energieffektivisering och minskning av växthusgasutsläpp finns. För att upprätthålla kunskap om var den största potentialen för förbättring finns krävs att energidata regelbundet samlas in efter en standardiserad kategorisering av energianvändande processer. Även om projektet har avgränsats till svensk industri kan resultatet vara till nytta också för andra medlemsstater inom EU liksom globalt.

Abstract [en]

Swedish industry should strategically work towards improved energy and resource efficiency. In this context, decision making and key performance indicators (KPIs) play a central role in achieving improved efficiency. Even for regulation authorities, fair KPIs of energy end-use are very important to be able to perform excellent, preventive and proactive work towards Swedish companies. KPIs at international and national levels are based on energy supplied, normally related to an economic output, such as value added. However, there are no key figures about the energy end-use in Swedish industry, distributed on energy carriers such as electricity and oil, and in turn allocated on energy end-using processes such as furnaces, air compressors, etc. The existing figures regarding this are based on rough estimates. The goal of the project has therefore been to generate a process tree for several of the largest, energy end-using Swedish manufacturing industries, as regards how energy end-use is distributed at the process level and for different energy carriers, and in turn allocate greenhouse gas emissions for these different processes. The results indicate that energy KPIs based on energy use and indirect carbon greenhouse gas emissions at process level can contribute to better knowledge of the industrial energy end-use processes that have the greatest potential for energy efficiency improvements as well as greenhouse gas abatement. In order to continuously know the processes with the greatest potential for improvement, energy end-use data should be collected regularly and follow a standardized categorization of energy end-use processes. The project has been limited to Swedish industry, but the results can be useful for other EU member states as well as globally.

Place, publisher, year, edition, pages
Stockholm: Naturvårdsverket, 2021. p. 101
Keywords
Slutenergianvändning, koldioxidutsläpp, energi, industri, benchmarking, energinycketal
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-176917 (URN)9789162069728 (ISBN)
Projects
Carbonstruct
Funder
Swedish Environmental Protection Agency
Available from: 2021-06-21 Created: 2021-06-21 Last updated: 2021-12-28Bibliographically approved
Haraldsson, J., Johnsson, S., Thollander, P. & Wallén, M. (2021). Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries. Energies, 14(12), Article ID 3571.
Open this publication in new window or tab >>Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries
2021 (English)In: Energies, E-ISSN 1996-1073, Vol. 14, no 12, article id 3571Article in journal (Refereed) Published
Abstract [en]

Increasing energy efficiency within the industrial sector is one of the main approachesin order to reduce global greenhouse gas emissions. The production and processing of aluminiumis energy and greenhouse gas intensive. To make well-founded decisions regarding energy effi-ciency and greenhouse gas mitigating investments, it is necessary to have relevant key performanceindicators and information about energy end-use. This paper develops a taxonomy and key perfor-mance indicators for energy end-use and greenhouse gas emissions in the aluminium industry andaluminium casting foundries. This taxonomy is applied to the Swedish aluminium industry andtwo foundries. Potentials for energy saving and greenhouse gas mitigation are estimated regardingstatic facility operation. Electrolysis in primary production is by far the largest energy using andgreenhouse gas emitting process within the Swedish aluminium industry. Notably, almost half of thetotal greenhouse gas emissions from electrolysis comes from process-related emissions, while theother half comes from the use of electricity. In total, about 236 GWh/year (or 9.2% of the total energyuse) and 5588–202,475 tonnes CO2eq/year can be saved in the Swedish aluminium industry and twoaluminium casting foundries. The most important key performance indicators identified for energyend-use and greenhouse gas emissions are MWh/tonne product and tonne CO2-eq/tonne product.The most beneficial option would be to allocate energy use and greenhouse gas emissions to boththe process or machine level and the product level, as this would give a more detailed picture of thecompany’s energy use and greenhouse gas emissions.

Place, publisher, year, edition, pages
MDPI, 2021
Keywords
energy consumption, aluminium, categorisation, benchmarking, electrolysis
National Category
Energy Systems Environmental Management
Identifiers
urn:nbn:se:liu:diva-177365 (URN)10.3390/en14123571 (DOI)000667360800001 ()
Projects
Carbonstruct
Note

Funding: Swedish Environmental Protection Agency; Swedish Agency for Marine andWater Management [802-0082-17]

Available from: 2021-06-26 Created: 2021-06-26 Last updated: 2023-08-28
Haraldsson, J. & Johansson, M. (2020). Effects on primary energy use, greenhouse gas emissions and related costs from improving energy end-use efficiency in the electrolysis in primary aluminium production. Energy Efficiency, 13(7), 1299-1314
Open this publication in new window or tab >>Effects on primary energy use, greenhouse gas emissions and related costs from improving energy end-use efficiency in the electrolysis in primary aluminium production
2020 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 13, no 7, p. 1299-1314Article in journal (Refereed) Published
Abstract [en]

Primary aluminium production is energy- and GHG-intensive in which electrolysis is by far the most energy- and GHG-intensive process. This paper’s aim is to study the effects on (1) primary energy use, (2) GHG emissions and (3) energy and CO2 costs when energy end-use efficiency measures are implemented in the electrolysis. Significant savings in final and primary energy use, GHG emissions and energy and CO2 costs can be achieved by implementing the studied measures. Vertical electrode cells and the combination of inert anodes and wettable cathodes are among the measures with the highest savings in all three areas (primary energy use, GHG emissions and energy and CO2 costs). Direct carbothermic reduction is one of the measures with the highest savings in primary energy use and energy and CO2 costs. For GHG emissions, direct carbothermic reduction is the more beneficial choice in regions with a high proportion of coal power, while inert anodes are the more beneficial choice in regions with a high proportion of low-carbon electricity. Although a company potentially can save more money by implementing the direct carbothermic reduction, the company should consider implementing the vertical electrode cells together with other energy-saving technologies since this would yield the largest GHG emission savings while providing similar cost savings as the direct carbothermic reduction. It may be necessary to impose a price on GHG emissions in order to make inert anodes cost-effective on their own, although further evaluations are needed in this regard. There is a potential to achieve carbon-neutrality in the reduction of aluminium oxide to pure aluminium.

Keywords
Energy saving, Aluminium industry, Primary energy consumption saving, GHG emission saving, Energy and CO2 cost saving, Direct carbothermic reduction
National Category
Energy Engineering
Identifiers
urn:nbn:se:liu:diva-168643 (URN)10.1007/s12053-020-09893-1 (DOI)000562667700001 ()
Funder
Swedish Energy Agency, 40552-1
Note

Funding agencies: Swedish Energy AgencySwedish Energy Agency [405521]

Available from: 2020-08-27 Created: 2020-08-27 Last updated: 2022-10-24
Haraldsson, J. (2020). Improved Energy Efficiency in the Aluminium Industry and its Supply Chains. (Doctoral dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Improved Energy Efficiency in the Aluminium Industry and its Supply Chains
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy is an essential resource in the daily lives of humans. However, the extraction and use of energy has an impact on the environment. The industrial sector accounts for a large share of the global final energy use and greenhouse gas (GHG) emissions. The largest source of industrial GHG emissions is energy use. The production and processing of aluminium is energy- and GHG-intensive, and uses significant amounts of fossil fuels and electricity. At the same time, the global demand for aluminium is predicted to rise significantly by the year 2050. Improved energy efficiency is one of the most important approaches for reducing industrial GHG emissions. Additionally, improved energy efficiency in industry is a competitive advantage for companies due to the cost reductions that energy efficiency improvements yield.

The aim of this thesis was to study improved energy efficiency in the individual companies and the entire supply chains of the aluminium industry. This included studying energy efficiency measures, potentials for energy efficiency improvements and energy savings, and which factors inhibit or drive the work to improve energy efficiency. The aim and the research questions were answered by conducting a literature review, focus groups, questionnaires and calculations of effects on primary energy use, GHG emissions, and energy and CO2 costs.

This thesis identified several energy efficiency measures that can be implemented by the individual companies in the aluminium industry and the aluminium casting foundries. The individual companies have large potentials for improving their energy efficiency. Energy efficiency measures within the electrolysis process have significant effects on primary energy use, GHG emissions, and energy and CO2 costs. This thesis showed that joint work between the companies in the supply chains of the aluminium industry is needed in order to achieve further energy efficiency improvements compared to the companies only working on their own. The joint work between the companies in the supply chain is needed to avoid sub-optimisation of the total energy use throughout the entire supply chain. Better communication and closer collaboration between all the companies in the supply chain are two of the most important aspects of the joint work to improve energy efficiency. An energy audit for the entire supply chain could be conducted as a first step in the joint work between the companies in the supply chains. Another important aspect is to increase the use of secondary aluminium or remelted material waste rather than primary aluminium.

The companies in the Swedish aluminium industry and the aluminium casting foundries have come some way in their work to improve energy efficiency within their own facilities. However, the results in this thesis indicate that cost-effective technology and improved management can, in total, save 126–185 GWh/year in the Swedish aluminium industry and 8–15 GWh/year in the Swedish aluminium casting foundries.

This thesis identified several demands regarding economics, product quality and performance, and environment placed on the companies and products in the supply chains that affect energy use and work to improve energy efficiency. These demands can sometimes counteract each other, and some demands are more important to meet than improving energy efficiency. This implies that improving the energy efficiency of the supply chains as well as designing products so they are energy-efficient in their use phase can sometimes be difficult. The results in this thesis indicate that it would be beneficial if the companies reviewed these demands to see whether any of them could be changed.

Both the economic aspects and demands from customers and authorities were shown to be important drivers for improved energy efficiency in the supply chains. However, placing demands on energy-efficient production and a company’s improved energy efficiency would require those placing the demands to have deeper knowledge compared to demanding green energy, for example. Requiring a company to implement an energy management system to ensure active work to improve energy efficiency would be easier for the customer than demanding a certain level of energy efficiency in the company’s processes. Additionally, energy audits and demands on conducted energy audits could act as drivers for improved energy efficiency throughout the supply chains.

This thesis showed that the most important barriers to improved energy efficiency within the individual companies include different types of risks as well as the cost of production disruption, complex production processes and technology being inappropriate at the site. Similar to the supply chains, important drivers for improved energy efficiency within the individual companies were shown to be economic aspects and demands from customers and authorities. However, the factors that are most important for driving the work to improve energy efficiency within the individual companies include the access to and utilisation of knowledge within the company, corporate culture, a longterm energy strategy, networking within the sector, information from technology suppliers and energy audits.

Abstract [sv]

Energi är en viktig resurs i människors dagliga liv, men utvinningen och användningen av energi påverkar miljön. Industrin står för en stor andel av den globala slutliga energianvändningen och de globala utsläppen av växthusgaser. Den största källan till industriella växthusgasutsläpp är energianvändning. Produktionen och bearbetningen av aluminium är energiintensiv och har stora utsläpp av växthusgaser och använder betydande mängder fossila bränslen och elektricitet. Samtidigt beräknas efterfrågan på aluminium öka avsevärt globalt till år 2050. Energieffektivisering är ett av de viktigaste medlen för att minska industriella växthusgasutsläpp. Dessutom är energieffektivisering inom industrin en konkurrensfördel för företagen på grund av de minskade kostnader som energieffektivisering medför.

Syftet med den här avhandlingen var att studera hur energianvändningen kan bli effektivare i de enskilda företagen och hela försörjningskedjorna i aluminiumindustrin. Detta inkluderade att studera energieffektiviseringsåtgärder, potentialer för energieffektivisering och energibesparing samt vilka faktorer som hindrar eller driver arbetet med energieffektivisering. Syftet och frågeställningarna besvarades genom litteraturstudier, fokusgrupper, enkäter samt beräkningar av påverkan på primärenergianvändning, växthusgasutsläpp och energi- och koldioxidkostnader.

Denna avhandling identifierade flera energieffektiviseringsåtgärder som kan genomföras av de enskilda företagen inom aluminiumindustrin och aluminiumgjuterierna. De enskilda företagen har stora potentialer för effektivare energianvändning. Energieffektiviseringsåtgärder inom elektrolysen har stor påverkan på primärenergianvändning, växthusgasutsläpp samt energi- och koldioxidkostnader.

Denna avhandling visade att det gemensamma arbetet mellan företagen i aluminiumindustrins försörjningskedjor är viktigt för att uppnå ytterligare effektiviseringar av energianvändningen jämfört med om de individuella företagen skulle arbeta enbart på egen hand. Det gemensamma arbetet mellan företagen i försörjningskedjan är viktigt för att undvika suboptimering av den totala energianvändningen i hela försörjningskedjan. Bättre kommunikation och närmare samarbete mellan alla företagen i försörjningskedjan är två av de viktigaste aspekterna i det gemensamma arbetet för att uppnå effektivare energianvändning. En energikartläggning av hela försörjningskedjan kan genomföras som ett första steg i det gemensamma arbetet mellan företagen. En annan viktig aspekt är att öka användningen av sekundärt aluminium eller omsmält processkrot snarare än att använda primärt aluminium.

Företagen i den svenska aluminiumindustrin och aluminiumgjuterierna har kommit en bit på vägen i deras arbeten mot effektivare energianvändning inom deras egna anläggningar. Dock visade resultaten i denna avhandling att kostnadseffektiv teknik och förbättrad energiledning totalt kan spara 126–185 GWh/år i den svenska aluminiumindustrin och 8–15 GWh/år i de svenska aluminiumgjuterierna.

Denna avhandling identifierade flera krav rörande ekonomi, produktkvalitet och -prestanda samt miljö som ställs på företagen och produkterna i försörjningskedjorna och som påverkar energianvändningen och arbetet mot effektivare energianvändning. Dessa krav kan ibland motverka varandra och vissa krav är viktigare att möta än att effektivisera energianvändningen. Detta innebär att det ibland kan vara svårt att energieffektivisera försörjningskedjorna samt att designa energianvändande produkter så att de är energieffektiva i användningsfasen. Resultaten i denna avhandling visar att det skulle vara fördelaktigt om företagen granskar kraven för att se om något av kraven skulle kunna ändras.

Både de ekonomiska aspekterna och krav från kunder och myndigheter visade sig vara viktiga drivkrafter för energieffektivisering i försörjningskedjorna. Om krav ställs på energieffektiv produktion och effektivare energianvändning inom ett företag behöver de aktörer som ställer kraven ha djupare kunskaper jämfört med om de till exempel skulle kräva användandet av grön energi. Ett krav på implementeringen av ett energiledningssystem för att säkerställa ett aktivt arbete med energieffektivisering skulle vara lättare för kunden att ställa än att kräva en viss energieffektiviseringsnivå i leverantörens processer. Dessutom kan energikartläggningar och krav på genomförda energikartläggningar fungera som drivkrafter för energieffektivisering i försörjningskedjorna.

Denna avhandling visade att de viktigaste hindren mot energieffektivisering inom de enskilda företagen är olika typer av risker samt kostnader för produktionsstörningar, komplexa produktionsprocesser och att tekniken inte är applicerbar inom anläggningen. I likhet med försörjningskedjorna uppkom de ekonomiska aspekterna och krav från kunder och myndigheter som viktiga drivkrafter för energieffektivisering inom de enskilda företagen. Dock är de viktigaste faktorerna för att driva på arbetet med energieffektivisering inom de enskilda företagen tillgången till och utnyttjandet av kunskap inom företaget, företagskulturen, en långsiktig energistrategi, nätverkande inom branschen, information från teknikleverantörer och energikartläggningar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 131
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2063
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-165252 (URN)10.3384/diss.diva-165252 (DOI)9789179298739 (ISBN)
Public defence
2020-05-15, Online through Zoom (contact magnus.karlsson@liu.se) and ACAS, A Building, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2020-04-20 Created: 2020-04-20 Last updated: 2020-10-19Bibliographically approved
Haraldsson, J. & Johansson, M. (2019). Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries. Sustainability, 11(7), Article ID 2043.
Open this publication in new window or tab >>Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries
2019 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 11, no 7, article id 2043Article in journal (Refereed) Published
Abstract [en]

Industrial energy efficiency is important for reducing CO2 emissions and could be a competitive advantage for companies because it can reduce costs. However, cost-effective energy efficiency measures are not always implemented because there are barriers inhibiting their implementation. Drivers for energy efficiency could provide means for overcoming these barriers. The aim of this article was to study the importance of different barriers to and drivers for improved energy efficiency in the Swedish aluminium industry and foundries that cast aluminium. Additionally, the perceived usefulness of different information sources on energy efficiency measures was studied. The data were collected through a questionnaire covering 39 barriers and 48 drivers, divided into different categories. Both the aluminium and foundry industries considered technological and economic barriers as the most important categories. The most important category of drivers for the aluminium industry was organisational drivers, while the foundries rated economic drivers as the most important. Colleagues within the company, the company group and sector, and the trade organisation were considered the most useful information sources. Important factors for driving work with improved energy efficiency included access to knowledge within the company, having a culture within the company promoting energy efficiency, and networking within the sector. The policy implications identified included energy labelling of production equipment, the law on energy audit in large companies and subsidy for energy audits in small- and medium-sized companies, voluntary agreements that included long-term energy strategies, increased taxes to improve the cost-effectiveness of energy efficiency measures, and EUs Emission Trading System.

Place, publisher, year, edition, pages
Basel, Switzerland: , 2019
Keywords
aluminium industry, foundry industry, energy efficiency, barriers, drivers, driving forces, information sources, questionnaire
National Category
Energy Systems Environmental Management Metallurgy and Metallic Materials Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:liu:diva-156237 (URN)10.3390/su11072043 (DOI)000466551600220 ()
Projects
Ökad energieffektivitet aluminiumindustrins värdekedjor – en klimatneutral bransch år 2050
Funder
Swedish Energy Agency, 40552-1
Note

Funding agencies:  Swedish Energy Agency [40552-1]; Linkoping University Library

Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2022-02-10
Haraldsson, J. & Johansson, M. (2019). Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden. Energies, 12(2), 245
Open this publication in new window or tab >>Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden
2019 (English)In: Energies, E-ISSN 1996-1073, Vol. 12, no 2, p. 245-Article in journal (Refereed) Published
Abstract [en]

Improved energy efficiency in supply chains can reduce both environmental impact and lifecycle costs, and thus becomes a competitive advantage in the work towards a sustainable global economy. Viewing the supply chain as a system provides the holistic perspective needed to avoid sub-optimal energy use. This article studies measures relating to technology and management that can increase energy efficiency in the supply chains of five aluminium products made in Sweden. Additionally, energy efficiency potentials related to the flows of material, energy, and knowledge between the actors in the supply chains are studied. Empirical data was collected using focus group interviews and one focus group per product was completed. The results show that there are several areas for potential energy efficiency improvement; for example, product design, communication and collaboration, transportation, and reduced material waste. Demands from other actors that can have direct or indirect effects on energy use in the supply chains were identified. Despite the fact that companies can save money through improved energy efficiency, demands from customers and the authorities would provide the additional incentives needed for companies to work harder to improve energy efficiency.

Place, publisher, year, edition, pages
Basel, Switzerland: , 2019
Keywords
energy efficiency, aluminium industry, supply chains, primary aluminium, secondary aluminium, extrusion, foundry, rolling mill, demands, focus groups
National Category
Energy Systems Environmental Management Metallurgy and Metallic Materials Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:liu:diva-153903 (URN)10.3390/en12020245 (DOI)000459743700046 ()
Projects
Increased energy efficiency in the supply chains of aluminium industry - a carbon neutral industry in 2050
Funder
Swedish Energy Agency, 40552-1
Note

Funding agencies: Swedish Energy Agency [40552-1]; Linkoping University Library

Available from: 2019-01-18 Created: 2019-01-18 Last updated: 2023-08-28
Haraldsson, J. & Johansson, M. (2019). Impact analysis of energy efficiency measures in the electrolysis process in primary aluminium production. In: WEENTECH Proceedings in Energy: . Paper presented at 3rd International Conference on Energy, Environment and Economics (pp. 177-184). , 4(2)
Open this publication in new window or tab >>Impact analysis of energy efficiency measures in the electrolysis process in primary aluminium production
2019 (English)In: WEENTECH Proceedings in Energy, 2019, Vol. 4(2), p. 177-184Conference paper, Published paper (Refereed)
Abstract [en]

The Paris Agreement includes the goals of ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels’ and ‘making finance flows consistent with a pathway towards low greenhouse gas emissions’. Industrial energy efficiency will play an important role in meeting those goals as well as becoming a competitive advantage due to reduced costs for companies. The aluminium industry is energy intensive and uses fossil fuels both for energy purposes and as reaction material. Additionally, the aluminium industry uses significant amounts of electricity. The electrolysis process in the primary production of aluminium is the most energy- and carbon-intensive process within the aluminium industry. The aim of this paper is to study the effects on primary energy use, greenhouse gas emissions and costs when three energy efficiency measures are implemented in the electrolysis process. The effects on the primary energy use, greenhouse gas emissions and costs are calculated by multiplying the savings in final energy use by a primary energy factor, emissions factor and price of electricity, respectively. The results showed significant savings in primary energy demand, greenhouse gas emissions and cost from the implementation of the three measures. These results only indicate the size of the potential savings and a site-specific investigation needs to be conducted for each plant. This paper is a part of a research project conducted in close cooperation with the Swedish aluminium industry.

Series
WEENTECH Proceedings in Energy, ISSN 2059-2353
Keywords
Energy efficiency, Aluminium industry, Primary aluminium production, Electrolysis, Primary energy use, Greenhouse gas emissions, Cost saving
National Category
Energy Systems Environmental Management Other Environmental Engineering Manufacturing, Surface and Joining Technology Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:liu:diva-153779 (URN)10.32438/WPE.8818 (DOI)
Conference
3rd International Conference on Energy, Environment and Economics
Projects
Increased energy efficiency in the supply chains of aluminium industry - a carbon neutral industry in 2050
Funder
Swedish Energy Agency, 40552-1
Available from: 2019-01-09 Created: 2019-01-09 Last updated: 2021-09-23
Johansson, M., Haraldsson, J. & Karlsson, M. (2018). Energy efficient supply chain of an aluminium product in Sweden – What can be done in-house and between the companies?. In: Therese Laitinen Lindström, Ylva Blume & Nina Hampus (Ed.), eceee 2018 Industrial Summer Study proceedings: . Paper presented at Industrial Efficiency 2018: Leading the low-carbon transition, Berlin June 11-13, 2018 (pp. 369-377). Stockholm, Sweden: European Council for an Energy Efficient Economy (ECEEE)
Open this publication in new window or tab >>Energy efficient supply chain of an aluminium product in Sweden – What can be done in-house and between the companies?
2018 (English)In: eceee 2018 Industrial Summer Study proceedings / [ed] Therese Laitinen Lindström, Ylva Blume & Nina Hampus, Stockholm, Sweden: European Council for an Energy Efficient Economy (ECEEE), 2018, p. 369-377Conference paper, Published paper (Refereed)
Abstract [en]

According to the Energy Efficiency Directive executed by the European Union, each member state is obliged to set a national target on energy efficiency. This requirement constitutes the basis for governments to formulate policy measures directed towards industrial companies. Such policy measures, along with the demand for cost-effective production to remain competitive on the market, motivates industrial companies to improve their energy efficiency. The aluminium industry is energy intensive and consumes substantial amounts of electricity and fossil fuels, resulting in both direct and indirect greenhouse gas emissions. This paper presents a study of the production of an aluminium product in Sweden in terms of implemented energy efficiency measures in the supply chain and potential areas for further improvement. Most previous studies have focused on energy efficiency measures in individual companies (value chains). However, this paper presents and analyses energy efficiency measures not only in each individual company but also in the entire supply chain of the product. The supply chain studied starts with secondary aluminium production followed by the production of a part of an automobile motor and ends with installing the motor detail in a car. Empirical data were gathered through a questionnaire and a focus group. The study shows the great potential for further energy efficiency improvements in the value chains of each individual company and in the whole supply chain. The work shown here is a part of a larger research project performed in close cooperation with the Swedish aluminium industry.

Place, publisher, year, edition, pages
Stockholm, Sweden: European Council for an Energy Efficient Economy (ECEEE), 2018
Series
eceee Industrial Summer Study Proceedings, ISSN 2001-7979, E-ISSN 2001-7987
Keywords
Value chain, Supply chains, Aluminium industry
National Category
Energy Systems Manufacturing, Surface and Joining Technology Environmental Management Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:liu:diva-148803 (URN)978-91-983878-2-7 (ISBN)978-91-983878-3-4 (ISBN)
Conference
Industrial Efficiency 2018: Leading the low-carbon transition, Berlin June 11-13, 2018
Funder
Swedish Energy Agency, 40552-1
Available from: 2018-06-25 Created: 2018-06-25 Last updated: 2020-10-19
Haraldsson, J. & Johansson, M. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry: From electrolysis to recycling. Renewable & sustainable energy reviews, 93, 525-548
Open this publication in new window or tab >>Review of measures for improved energy efficiency in production-related processes in the aluminium industry: From electrolysis to recycling
2018 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 93, p. 525-548Article, review/survey (Refereed) Published
Abstract [en]

The aluminium industry is facing a challenge in meeting the goal of halved greenhouse gas emissions by 2050, while the demand for aluminium is estimated to increase 2–3 times by the same year. Energy efficiency will play an important part in achieving the goal. The paper’s aim was to investigate possible production-related energy efficiency measures in the aluminium industry. Mining of bauxite and production of alumina from bauxite are not included in the study. In total, 52 measures were identified through a literature review. Electrolysis in primary aluminium production, recycling and general measures constituted the majority of the 52 measures. This can be explained by the high energy intensity of electrolysis, the relatively wide applicability of the general measures and the fact that all aluminium passes through either electrolysis or recycling. Electrolysis shows a higher number of emerging/novel measures compared to the other processes, which can also be explained by its high energy intensity. Processing aluminium with extrusion, rolling, casting (shape-casting and casting of ingots, slabs and billets), heat treatment and anodising will also benefit from energy efficiency. However, these processes showed relatively fewer measures, which might be explained by the fact that to some extent, these processes are not as energy demanding compared, for example, to electrolysis. In many cases, the presented measures can be combined, which implies that the best practice should be to combine the measures. There may also be a future prospect of achieving carbon-neutral and coal-independent electrolysis. Secondary aluminium production will be increasingly important for meeting the increasing demand for aluminium with respect to environmental and economic concerns and strengthened competitiveness. Focusing on increased production capacity, recovery yields and energy efficiency in secondary production will be pivotal. Further research and development will be required for those measures designated as novel or emerging.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Aluminum industry, Aluminum production, Energy efficiency, Electrolysis, Recycling, Efficiency measures
National Category
Manufacturing, Surface and Joining Technology Energy Systems
Identifiers
urn:nbn:se:liu:diva-148404 (URN)10.1016/j.rser.2018.05.043 (DOI)000440966900039 ()
Funder
Swedish Energy Agency, 40552-1
Available from: 2018-06-08 Created: 2018-06-08 Last updated: 2020-04-20Bibliographically approved
Söderström, M., Johansson, M. & Haraldsson, J. (2017). Samarbete för energieffektivitet. Aluminium Scandinavia, 34(3), 26-27
Open this publication in new window or tab >>Samarbete för energieffektivitet
2017 (Swedish)In: Aluminium Scandinavia, ISSN 0282-2628, Vol. 34, no 3, p. 26-27Article in journal (Other (popular science, discussion, etc.)) Published
Place, publisher, year, edition, pages
Västerås, Sweden: Aluminium Scandinavia, 2017
National Category
Manufacturing, Surface and Joining Technology Energy Systems
Identifiers
urn:nbn:se:liu:diva-148406 (URN)
Available from: 2018-06-08 Created: 2018-06-08 Last updated: 2018-07-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6790-3867

Search in DiVA

Show all publications