liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Chen, Shangzhi
Publications (3 of 3) Show all publications
Chen, S., Kang, E. S. H., Shiran Chaharsoughi, M., Stanishev, V., Kuhne, P., Sun, H., . . . Jonsson, M. (2020). Conductive polymer nanoantennas for dynamicorganic plasmonics [Letter to the editor]. Nature Nanotechnology, 15, Article ID s41565-019-0583-y.
Open this publication in new window or tab >>Conductive polymer nanoantennas for dynamicorganic plasmonics
Show others...
2020 (English)In: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15, article id s41565-019-0583-yArticle in journal, Letter (Refereed) Published
Abstract [en]

Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

Place, publisher, year, edition, pages
London: Nature Publishing Group, 2020
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-163089 (URN)10.1038/s41565-019-0583-y (DOI)2-s2.0-85076515412 (Scopus ID)
Available from: 2020-01-10 Created: 2020-01-10 Last updated: 2020-01-14Bibliographically approved
Kim, N., Petsagkourakis, I., Chen, S., Berggren, M., Crispin, X., Jonsson, M. & Zozoulenko, I. (2019). Electric Transport Properties in PEDOT Thin Films. In: John R. Reynolds; Barry C. Thompson; Terje A. Skotheim (Ed.), Conjugated Polymers: Properties, Processing, and Applications (pp. 45-128). Boca Raton: CRC Press
Open this publication in new window or tab >>Electric Transport Properties in PEDOT Thin Films
Show others...
2019 (English)In: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, p. 45-128Chapter in book (Refereed)
Abstract [en]

In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

Place, publisher, year, edition, pages
Boca Raton: CRC Press, 2019
National Category
Materials Engineering Bio Materials
Identifiers
urn:nbn:se:liu:diva-160891 (URN)10.1201/9780429190520-3 (DOI)9780429190520 (ISBN)
Available from: 2019-10-14 Created: 2019-10-14 Last updated: 2019-10-14Bibliographically approved
Kang, E. S. H., Chen, S., Sardar, S., Tordera, D., Armakavicius, N., Darakchieva, V., . . . Jonsson, M. (2018). Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces. ACS Photonics, 4046-4055
Open this publication in new window or tab >>Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces
Show others...
2018 (English)In: ACS Photonics, E-ISSN 2330-4022, p. 4046-4055Article in journal (Refereed) Published
Abstract [en]

Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
Keywords
directional absorption; Fano interferences; J-aggregates; metasurfaces; nanoholes; plasmonics; polaritons; strong coupling
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-151716 (URN)10.1021/acsphotonics.8b00679 (DOI)000447954200023 ()
Note

Funding agencies: Wenner-Gren Foundations; Swedish Research Council; Swedish Foundation for Strategic Research; AForsk Foundation; Royal Swedish Academy of Sciences; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping Univer

Available from: 2018-10-03 Created: 2018-10-03 Last updated: 2018-11-09
Organisations

Search in DiVA

Show all publications