liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gated Bayesian Networks
Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-8678-1164
2017 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

Bayesian networks have grown to become a dominant type of model within the domain of probabilistic graphical models. Not only do they empower users with a graphical means for describing the relationships among random variables, but they also allow for (potentially) fewer parameters to estimate, and enable more efficient inference. The random variables and the relationships among them decide the structure of the directed acyclic graph that represents the Bayesian network. It is the stasis over time of these two components that we question in this thesis.

By introducing a new type of probabilistic graphical model, which we call gated Bayesian networks, we allow for the variables that we include in our model, and the relationships among them, to change overtime. We introduce algorithms that can learn gated Bayesian networks that use different variables at different times, required due to the process which we are modelling going through distinct phases. We evaluate the efficacy of these algorithms within the domain of algorithmic trading, showing how the learnt gated Bayesian networks can improve upon a passive approach to trading. We also introduce algorithms that detect changes in the relationships among the random variables, allowing us to create a model that consists of several Bayesian networks, thereby revealing changes and the structure by which these changes occur. The resulting models can be used to detect the currently most appropriate Bayesian network, and we show their use in real-world examples from both the domain of sports analytics and finance.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2017. , 213 s.
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1851
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-136761DOI: 10.3384/diss.diva-136761ISBN: 978-91-7685-525-6 (tryckt)OAI: oai:DiVA.org:liu-136761DiVA: diva2:1090575
Disputas
2017-09-06, Ada Lovelace, hus B, Campus Valla, Linköping, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-06-08 Laget: 2017-04-24 Sist oppdatert: 2017-09-21bibliografisk kontrollert

Open Access i DiVA

fulltext(2180 kB)112 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2180 kBChecksum SHA-512
bce395ad0709378ac1ef7abdc269bab97b00ba32d01184f36526b074ea2a5e2812a311e15a218bafcd9b20042ddf2a089a616cc456c4169e6dadf64c23eec29b
Type fulltextMimetype application/pdf
omslag(153 kB)25 nedlastinger
Filinformasjon
Fil COVER01.pdfFilstørrelse 153 kBChecksum SHA-512
130aaff6469f12c1842916999b9cbe0be1a4ddc77fc48c437c6798719e58c09b172b9433ac232f2384d85994e35d46262840f27bc520e9f0912aeb5435e92d59
Type coverMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Bendtsen, Marcus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 112 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

Altmetric

Totalt: 2800 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf