liu.seSearch for publications in DiVA
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimizing the Number of Time-steps Used in Option Pricing
Linköpings universitet, Institutionen för datavetenskap.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Optimering av Antal Tidssteg inom Optionsprissättning (svensk)
Abstract [en]

Calculating the price of an option commonly uses numerical methods and can becomputationally heavy. In general, longer computations result in a more precisresult. As such, improving existing models or creating new models have been thefocus in the research field. More recently the focus has instead shifted towardcreating neural networks that can predict the price of a given option directly.This thesis instead studied how the number of time-steps parameter can beoptimized, with regard to precision of the resulting price, and then predict theoptimal number of time-steps for other options. The number of time-stepsparameter determines the computation time of one of the most common models inoption pricing, the Cox-Ross-Rubinstein model (CRR). Two different methodsfor determining the optimal number of time-steps were created and tested. Bothmodels use neural networks to learn the relationship between the input variablesand the output. The first method tried to predict the optimal number oftime-steps directly. The other method instead tried to predict the parameters ofan envelope around the oscillations of the option pricing method. It wasdiscovered that the second method improved the performance of the neuralnetworks tasked with predicting the optimal number of time-steps. It was furtherdiscovered that even though the best neural network that was found significantlyoutperformed the benchmark method, there was no significant difference incalculation times, most likely because the range of log moneyness and pricesthat were used. It was also noted that the neural network tended tounderestimate the parameter and that might not be a desirable property of asystem in charge of estimating a price in the financial sector.

sted, utgiver, år, opplag, sider
2019. , s. 58
Emneord [en]
Option pricing, binomial trees, machine learning, deep learning, discretization methods, optimization, recombinant tree, convergence
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-159648ISRN: LIU-IDA/LITH-EX-A--19/056--SEOAI: oai:DiVA.org:liu-159648DiVA, id: diva2:1342920
Eksternt samarbeid
Nasdaq
Fag / kurs
Computer Engineering
Veileder
Examiner
Tilgjengelig fra: 2019-08-19 Laget: 2019-08-14 Sist oppdatert: 2019-08-19bibliografisk kontrollert

Open Access i DiVA

fulltext(1164 kB)10 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1164 kBChecksum SHA-512
fb37a4c48710d17c0427502e48548dcca3d4817dcb8ef87ed8d509e02104eebb8b4661fff40ff56a364196f7301be906542622d46118efa1f132f147f93020f6
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 10 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf