liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In vivo polymerization and manufacturing of wires and supercapacitors in plants
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi.ORCID-id: 0000-0002-5582-140X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 11, s. 2807-2812Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization

sted, utgiver, år, opplag, sider
National Academy of Sciences , 2017. Vol. 114, nr 11, s. 2807-2812
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-135492DOI: 10.1073/pnas.1616456114ISI: 000396094200029OAI: oai:DiVA.org:liu-135492DiVA, id: diva2:1082202
Merknad

Funding agencies: Knut and Alice Wallenberg Foundation Scholar Grant [KAW 2012.0302]; Linkoping University; Onnesjo Foundation; Wenner-Gren Foundations; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkping University [SFO-Mat-

Tilgjengelig fra: 2017-03-16 Laget: 2017-03-16 Sist oppdatert: 2017-11-29bibliografisk kontrollert
Inngår i avhandling
1. Ionic and electronic transport in electrochemical and polymer based systems
Åpne denne publikasjonen i ny fane eller vindu >>Ionic and electronic transport in electrochemical and polymer based systems
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Electrochemical systems, which rely on coupled phenomena of the chemical change and electricity, have been utilized for development an interface between biological systems and conventional electronics.  The development and detailed understanding of the operation mechanism of such interfaces have a great importance to many fields within life science and conventional electronics. Conducting polymer materials are extensively used as a building block in various applications due to their ability to transduce chemical signal to electrical one and vice versa. The mechanism of the coupling between the mass and charge transfer in electrochemical systems, and particularly in conductive polymer based system, is highly complex and depends on various physical and chemical properties of the materials composing the system of interest.

The aims of this thesis have been to study electrochemical systems including conductive polymer based systems and provide knowledge for future development of the devices, which can operate with both chemical and electrical signals. Within the thesis, we studied the operation mechanism of ion bipolar junction transistor (IBJT), which have been previously utilized to modulate delivery of charged molecules. We analysed the different operation modes of IBJT and transition between them on the basis of detailed concentration and potential profiles provided by the model.

We also performed investigation of capacitive charging in conductive PEDOT:PSS polymer electrode. We demonstrated that capacitive charging of PEDOT:PSS electrode at the cyclic voltammetry, can be understood within a modified Nernst-Planck-Poisson formalism for two phase system in terms of the coupled ion-electron diffusion and migration without invoking the assumption of any redox reactions.

Further, we studied electronic structure and optical properties of a self-doped p-type conducting polymer, which can polymerize itself along the stem of the plants. We performed ab initio calculations for this system in undoped, polaron and bipolaron electronic states. Comparison with experimental data confirmed the formation of undoped or bipolaron states in polymer film depending on applied biases.

Finally, we performed simulation of the reduction-oxidation reaction at microband array electrodes. We showed that faradaic current density at microband array electrodes increases due to non-linear mass transport on the microscale compared to the corresponding macroscale systems.  The studied microband array electrode was used for developing a laccase-based microband biosensor. The biosensor revealed improved analytical performance, and was utilized for in situ phenol detection.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2017. s. 49
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1841
Emneord
Modeling, Charge transport, Charge carriers Electrochemical systems, Polymer, PEDOT:PSS, Supercapacitance, Cyclic voltammetry, double layers, Nernst-Planck-Poisson, DFT, TDDFT, Ion Bipolar Junction Transistor, ETE-S
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-135429 (URN)10.3384/diss.diva-1082793 (DOI)9789176855485 (ISBN)
Disputas
2017-04-25, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-03-24 Laget: 2017-03-17 Sist oppdatert: 2019-10-12bibliografisk kontrollert

Open Access i DiVA

fulltext(1658 kB)333 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1658 kBChecksum SHA-512
d25d51cca1e555cdf04b0a2d7470c584987884f91b708f6e78aa145131a38150003e292b6c500d2fa1b7fc217f9b7756444d72724e191c2dd140f2f8adfd5622
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Elgland, MathiasSimon, DanielBerggren, Magnus

Søk i DiVA

Av forfatter/redaktør
Stavrinidou, EleniGabrielsson, RogerNilsson, K. Peter R.Singh, Sandeep KumarFranco- Gonzalez, Juan FelipeVolkov, Anton V.Jonsson, Magnus P.Grimoldi, AndreaElgland, MathiasZozoulenko, Igor V.Simon, DanielBerggren, Magnus
Av organisasjonen
I samme tidsskrift
Proceedings of the National Academy of Sciences of the United States of America

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 333 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4505 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf