liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0003-2930-676X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-8478-4663
Vise andre og tillknytning
2018 (engelsk)Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, nr 7, s. 11899-11904Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

sted, utgiver, år, opplag, sider
National academy of sciences , 2018. nr 7, s. 11899-11904
Emneord [en]
conducting polymer, electron transfer, thermogalvanic cell
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-152759DOI: 10.1073/pnas.1806087115ISI: 000450642800036PubMedID: 30397110OAI: oai:DiVA.org:liu-152759DiVA, id: diva2:1264452
Merknad

Funding agencies: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University Faculty Grant [SFO-Mat-LiU 2009-00971]

Tilgjengelig fra: 2018-11-20 Laget: 2018-11-20 Sist oppdatert: 2019-12-04
Inngår i avhandling
1. Conducting Polymer Electrodes for Thermogalvanic Cells
Åpne denne publikasjonen i ny fane eller vindu >>Conducting Polymer Electrodes for Thermogalvanic Cells
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Fossil fuels are still the dominant (ca. 80%) energy source in our society. A significant fraction is used to generate electricity with a heat engine possessing an efficiency of approximately 35%. Therefore, about 65% of fossil fuel energy is wasted in heat. Other primary heat sources include solar and geothermal energies that can heat up solid and fluids up to 150°C. The growing demand and severe environmental impact of energy systems provide an impetus for effective management and harvesting solutions dealing with waste heat. A promising way to use waste heat is to directly convert thermal energy into electrical energy by thermoelectric generators (TEGs). Solid state TEGs are electronic devices that generate electrical power due to the thermo-diffusion of electronic charge carriers in the semiconductor upon application of the thermal field. However, there is another type of thermoelectric device that has been much less investigated; this is the thermogalvanic cell (TGCs). The TGC is an electrochemical device that consists of the electrolyte solution including a reversible redox couple sandwiched between two electrodes. In our study, we focus on iron-based organometallic molecules in aqueous electrolyte. A temperature difference (Δ𝑇) between the electrodes promotes a difference in the electrode potentials [Δ𝐸(𝑇)]. Since the electrolyte contains a redox couple acting like electronic shuttle between the two electrodes, power can be generated when the two electrodes are submitted to a temperature difference. The focus of this thesis is (i) to investigate the possibility to use conducting polymer electrodes for thermogalvanic cells as an alternative to platinum and carbon-based electrodes, (ii) to investigate the role of viscosity of the electrolyte in order to consider polymer electrolytes, (iii) to understand the mechanisms limiting the electrical power output in TGCs; and (iv) to understand the fundamentals of the electron transfer taking place at the interface between the polymer electrode and the redox molecule in the electrolyte. These findings provide an essential toolbox for further improvement in conducting polymer thermogalvanic cells and various other emerging electrochemical technologies such as fuel cells, redox flow battery, dye-sensitized solar cells and industrial electrochemical synthesis.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 93
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1971
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-152888 (URN)10.3384/diss.diva-152888 (DOI)9789176851562 (ISBN)
Disputas
2018-12-07, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-27 Laget: 2018-11-27 Sist oppdatert: 2019-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(1561 kB)44 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1561 kBChecksum SHA-512
3b257c52b90fcaeab543b3f4bb24adbc6242b6dad2fa26eb199c0d4e2747c0ff043b928239ec741bbc7d703e0ee2d1c9bb7c159eedaa9ecc1ee4c416d7d2575d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Ail, UjwalaBrooke, RobertVagin, MikhailLiu, XianjieFahlman, MatsCrispin, Xavier

Søk i DiVA

Av forfatter/redaktør
Wijeratne, KosalaAil, UjwalaBrooke, RobertVagin, MikhailLiu, XianjieFahlman, MatsCrispin, Xavier
Av organisasjonen
I samme tidsskrift
Proceedings of the National Academy of Sciences of the United States of America

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 44 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 628 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf