liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Image Matching System for Autonomous UAV Navigation Based on Neural Network
National Institute for Space Research, Sao Jose dos Campos, SP, Brazil.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten. (UASTECH – Teknologier för autonoma obemannade flygande farkoster, UASTECH - Autonomous Unmanned Aircraft Systems Technologies *(2012-05-31))
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten. (UASTECH – Teknologier för autonoma obemannade flygande farkoster, UASTECH - Autonomous Unmanned Aircraft Systems Technologies *(2012-05-31))
National Institute for Space Research, Sao Jose dos Campos, SP, Brazil.
Vise andre og tillknytning
2016 (engelsk)Inngår i: 14th International Conference on Control, Automation, Robotics and Vision (ICARCV 2016), 2016Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper proposes an image matching system using aerial images, captured in flight time, and aerial geo-referenced images to estimate the Unmanned Aerial Vehicle (UAV) position in a situation of Global Navigation Satellite System (GNSS) failure. The image matching system is based on edge detection in the aerial and geo-referenced image and posterior automatic image registration of these edge-images (position estimation of UAV). The edge detection process is performed by an Artificial Neural Network (ANN), with an optimal architecture. A comparison with Sobel and Canny edge extraction filters is also provided. The automatic image registration is obtained by a cross-correlation process. The ANN optimal architecture is set by the Multiple Particle Collision Algorithm (MPCA). The image matching system was implemented in a low cost/consumption portable computer. The image matching system has been tested on real flight-test data and encouraging results have been obtained. Results using real flight-test data will be presented.

sted, utgiver, år, opplag, sider
2016.
Serie
International Conference on Control Automation Robotics and Vision, ISSN 2474-2953
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-132282DOI: 10.1109/ICARCV.2016.7838775ISI: 000405520900176ISBN: 978-1-5090-3549-6 (digital)ISBN: 978-1-5090-3550-2 (tryckt)OAI: oai:DiVA.org:liu-132282DiVA, id: diva2:1040071
Konferanse
14th International Conference on Control, Automation, Robotics and Vision (ICARCV 2016), 12-15 November 2016, Phuket, Thailand.
Prosjekter
CADICSELLIITCUASSymbiCloud
Merknad

Funding agencies:This work was carried out with support from CNPq - National Counsel of Technological and Scientific Development - Brazil. This work is partially supported by the Swedish Research Council (VR) Linnaeus Center CADICS, ELLIIT, and the Swedish Foundation for Strategic Research (CUAS Project, SymbiKCloud Project).

Tilgjengelig fra: 2016-10-26 Laget: 2016-10-26 Sist oppdatert: 2018-07-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Conte, GianpaoloDoherty, Patrick
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 723 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf