liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A HIGH DYNAMIC RANGE VIDEO CODEC OPTIMIZED BY LARGE-SCALE TESTING
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
University of Cambridge, England.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-7765-1747
2016 (engelsk)Inngår i: 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), IEEE , 2016, s. 1379-1383Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

While a number of existing high-bit depth video compression methods can potentially encode high dynamic range (HDR) video, few of them provide this capability. In this paper, we investigate techniques for adapting HDR video for this purpose. In a large-scale test on 33 HDR video sequences, we compare 2 video codecs, 4 luminance encoding techniques (transfer functions) and 3 color encoding methods, measuring quality in terms of two objective metrics, PU-MSSIM and HDR-VDP-2. From the results we design an open source HDR video encoder, optimized for the best compression performance given the techniques examined.

sted, utgiver, år, opplag, sider
IEEE , 2016. s. 1379-1383
Serie
IEEE International Conference on Image Processing ICIP, ISSN 1522-4880
Emneord [en]
High dynamic range (HDR) video; HDR video coding; perceptual image metrics
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-134106DOI: 10.1109/ICIP.2016.7532584ISI: 000390782001093ISBN: 978-1-4673-9961-6 (tryckt)OAI: oai:DiVA.org:liu-134106DiVA, id: diva2:1067519
Konferanse
23rd IEEE International Conference on Image Processing (ICIP)
Tilgjengelig fra: 2017-01-22 Laget: 2017-01-22 Sist oppdatert: 2018-05-15
Inngår i avhandling
1. The high dynamic range imaging pipeline: Tone-mapping, distribution, and single-exposure reconstruction
Åpne denne publikasjonen i ny fane eller vindu >>The high dynamic range imaging pipeline: Tone-mapping, distribution, and single-exposure reconstruction
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Techniques for high dynamic range (HDR) imaging make it possible to capture and store an increased range of luminances and colors as compared to what can be achieved with a conventional camera. This high amount of image information can be used in a wide range of applications, such as HDR displays, image-based lighting, tone-mapping, computer vision, and post-processing operations. HDR imaging has been an important concept in research and development for many years. Within the last couple of years it has also reached the consumer market, e.g. with TV displays that are capable of reproducing an increased dynamic range and peak luminance.

This thesis presents a set of technical contributions within the field of HDR imaging. First, the area of HDR video tone-mapping is thoroughly reviewed, evaluated and developed upon. A subjective comparison experiment of existing methods is performed, followed by the development of novel techniques that overcome many of the problems evidenced by the evaluation. Second, a largescale objective comparison is presented, which evaluates existing techniques that are involved in HDR video distribution. From the results, a first open-source HDR video codec solution, Luma HDRv, is built using the best performing techniques. Third, a machine learning method is proposed for the purpose of reconstructing an HDR image from one single-exposure low dynamic range (LDR) image. The method is trained on a large set of HDR images, using recent advances in deep learning, and the results increase the quality and performance significantly as compared to existing algorithms.

The areas for which contributions are presented can be closely inter-linked in the HDR imaging pipeline. Here, the thesis work helps in promoting efficient and high-quality HDR video distribution and display, as well as robust HDR image reconstruction from a single conventional LDR image.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 132
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1939
Emneord
high dynamic range imaging, tone-mapping, video tone-mapping, HDR video encoding, HDR image reconstruction, inverse tone-mapping, machine learning, deep learning
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-147843 (URN)10.3384/diss.diva-147843 (DOI)9789176853023 (ISBN)
Disputas
2018-06-08, Domteatern, Visualiseringscenter C, Kungsgatan 54, Campus Norrköping, Norrköping, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-05-15 Laget: 2018-05-15 Sist oppdatert: 2019-09-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Eilertsen, GabrielUnger, Jonas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 165 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf