liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Probability of Support Recovery for Orthogonal Matching Pursuit Using Mutual Coherence
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Computer Graphics and Image Processing)
Qualcomm Technologies Inc., San Jose, CA, USA.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Computer Graphics and Image Processing)ORCID-id: 0000-0002-7765-1747
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. (Ultra high-speed Nonlinear Integrated Circuit (UNIC))
2017 (engelsk)Inngår i: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 24, nr 11, s. 1646-1650Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we present a new coherence-based performance guarantee for the Orthogonal Matching Pursuit (OMP) algorithm. A lower bound for the probability of correctly identifying the support of a sparse signal with additive white Gaussian noise is derived. Compared to previous work, the new bound takes into account the signal parameters such as dynamic range, noise variance, and sparsity. Numerical simulations show significant improvements over previous work and a closer match to empirically obtained results of the OMP algorithm.

sted, utgiver, år, opplag, sider
IEEE Signal Processing Society, 2017. Vol. 24, nr 11, s. 1646-1650
Emneord [en]
Compressed Sensing (CS), Sparse Recovery, Orthogonal Matching Pursuit (OMP), Mutual Coherence
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-141613DOI: 10.1109/LSP.2017.2753939ISI: 000412501600001OAI: oai:DiVA.org:liu-141613DiVA, id: diva2:1146543
Tilgjengelig fra: 2017-10-03 Laget: 2017-10-03 Sist oppdatert: 2018-11-23bibliografisk kontrollert
Inngår i avhandling
1. Sparse representation of visual data for compression and compressed sensing
Åpne denne publikasjonen i ny fane eller vindu >>Sparse representation of visual data for compression and compressed sensing
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The ongoing advances in computational photography have introduced a range of new imaging techniques for capturing multidimensional visual data such as light fields, BRDFs, BTFs, and more. A key challenge inherent to such imaging techniques is the large amount of high dimensional visual data that is produced, often requiring GBs, or even TBs, of storage. Moreover, the utilization of these datasets in real time applications poses many difficulties due to the large memory footprint. Furthermore, the acquisition of large-scale visual data is very challenging and expensive in most cases. This thesis makes several contributions with regards to acquisition, compression, and real time rendering of high dimensional visual data in computer graphics and imaging applications.

Contributions of this thesis reside on the strong foundation of sparse representations. Numerous applications are presented that utilize sparse representations for compression and compressed sensing of visual data. Specifically, we present a single sensor light field camera design, a compressive rendering method, a real time precomputed photorealistic rendering technique, light field (video) compression and real time rendering, compressive BRDF capture, and more. Another key contribution of this thesis is a general framework for compression and compressed sensing of visual data, regardless of the dimensionality. As a result, any type of discrete visual data with arbitrary dimensionality can be captured, compressed, and rendered in real time.

This thesis makes two theoretical contributions. In particular, uniqueness conditions for recovering a sparse signal under an ensemble of multidimensional dictionaries is presented. The theoretical results discussed here are useful for designing efficient capturing devices for multidimensional visual data. Moreover, we derive the probability of successful recovery of a noisy sparse signal using OMP, one of the most widely used algorithms for solving compressed sensing problems.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 158
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1963
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-152863 (URN)10.3384/diss.diva-152863 (DOI)9789176851869 (ISBN)
Disputas
2018-12-14, Domteatern, Visualiseringscenter C, Kungsgatan 54, Campus Norrköping, Norrköping, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-23 Laget: 2018-11-23 Sist oppdatert: 2018-11-23bibliografisk kontrollert

Open Access i DiVA

fulltext(925 kB)64 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 925 kBChecksum SHA-512
dd60b24d7d6f12827f199f316857dd050b11451841e79e5013f4f139d5d580a7bdf083605a6f685fbc27d0541b9310c88f8a5a60602b636ae05ebe2b30b8f240
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://ieeexplore.ieee.org.e.bibl.liu.se/document/8039500/

Personposter BETA

Miandji, EhsanUnger, Jonas

Søk i DiVA

Av forfatter/redaktør
Miandji, EhsanUnger, Jonas
Av organisasjonen
I samme tidsskrift
IEEE Signal Processing Letters

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 64 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 149 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf