liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ESTIMATES OF EIGENVALUES OF SCHRODINGER OPERATORS ON THE HALF-LINE WITH COMPLEX-VALUED POTENTIALS
Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
2017 (engelsk)Inngår i: Operators and Matrices, ISSN 1846-3886, E-ISSN 1848-9974, Vol. 11, nr 2, s. 369-380Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Estimates for eigenvalues of Schrodinger operators on the half-line with complex-valued potentials are established. Schrodinger operators with potentials belonging to weak Lebesques classes are also considered. The results cover those known previously due to R. L. Frank, A. Laptev and R. Seiringer

sted, utgiver, år, opplag, sider
ELEMENT , 2017. Vol. 11, nr 2, s. 369-380
Emneord [en]
Schrodinger operators; complex potentials; estimation of eigenvalues
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-142843DOI: 10.7153/oam-11-25ISI: 000413116800006OAI: oai:DiVA.org:liu-142843DiVA, id: diva2:1154918
Tilgjengelig fra: 2017-11-06 Laget: 2017-11-06 Sist oppdatert: 2018-02-13
Inngår i avhandling
1. Resolvent Estimates and Bounds on Eigenvalues for Schrödinger and Dirac Operators
Åpne denne publikasjonen i ny fane eller vindu >>Resolvent Estimates and Bounds on Eigenvalues for Schrödinger and Dirac Operators
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis concerns the spectral theory of Schrödinger and Dirac operators. The main results relate to the problems of estimating perturbed eigenvalues. The thesis is based on four papers.

The first paper focuses on the problem of localization of perturbed eigenvalues for multidimensional Schrödinger operators. Bounds for eigenvalues, lying outside the essential spectrum, are obtained in terms of the Lebesgue's classes. The methods used make it possible to consider the general case of non-self-adjoint operators, and involve the weak Lebesgue's potentials. The results are extended to the case of the polyharmonic operators.

In the second paper, the problem of location of the discrete spectrum is solved for the class of Schrödinger operators considered on the half-line. The general case of complex-valued potentials, imposing various boundary conditions, typically Dirichlet and Neumann conditions, is considered. General mixed boundary conditions are also treated.

The third paper is devoted to Dirac operators. The case of spherically symmetric potentials is considered. Estimates for the eigenvalues are derived from the asymptotic behaviour of the resolvent of the free Dirac operator. For the massless Dirac operators, whose essential spectrum is the whole real line, optimal bounds for the imaginary part of the eigenvalues are established.

In the fourth paper, new Hardy-Carleman type inequalities for Dirac operators are proven. Concrete Carleman type inequalities, useful in applications, Agmon and also Treve type inequalities are derived from the general results by involving special weight functions. The results are extended to the case of the Dirac operator describing the relativistic particle in a potential magnetic field.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 39
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1906
Emneord
Spectral theory, Schrödinger operators, polyharmonic operators, Dirac operators, non-self-adjoint perturbations, complex potential, estimation of eigenvalues, Carleman inequalities, Hardy inequalities
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-145173 (URN)10.3384/diss.diva-145173 (DOI)9789176853627 (ISBN)
Disputas
2018-03-28, BL32, B-huset, Campus Valla, Linköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-02-14 Laget: 2018-02-13 Sist oppdatert: 2019-09-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Enblom, Alexandra
Av organisasjonen
I samme tidsskrift
Operators and Matrices

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 240 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf