liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cre-expressing neurons in visual cortex of Ntsr1-Cre GN220 mice are corticothalamic and are depolarized by acetylcholine
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Kirurgi, Ortopedi och Onkologi. Linköpings universitet, Medicinska fakulteten.ORCID-id: 0000-0001-7952-8120
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.ORCID-id: 0000-0001-7526-923X
2018 (engelsk)Inngår i: Journal of Comparative Neurology, ISSN 0021-9967, E-ISSN 1096-9861, Vol. 526, nr 1, s. 120-132Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Ntsr1-Cre GN220 mouse expresses Cre-recombinase in corticothalamic (CT) neurons in neocortical layer 6. It is not known if the other major types of pyramidal neurons in this layer also express this enzyme. By electrophysiological recordings in slices and histological analysis of the uptake of retrogradely transported beads we show that Cre-positive neurons are CT and not corticocortical or corticoclaustral types. Furthermore, we show that Ntsr1-Cre-positive cells are immuno-positive for the nuclear transcription factor Forkhead box protein P2 (FoxP2). We conclude that Cre-expression is limited to a specific type of pyramidal neuron: CT. However, it appears as not all CT neurons are Cre-expressing; there are indications that the penetrance of the gene is about 90%. We demonstrate the utility of assigning a specific identity to individual neurons by determining that the CT neurons are potently modulated by acetylcholine acting on both nicotinic and muscarinic acetylcholine receptors. These results corroborate the suggested function of these neurons in regulating the gain of thalamocortical transfer of sensory information depending on attentional demand and state of arousal.

sted, utgiver, år, opplag, sider
WILEY , 2018. Vol. 526, nr 1, s. 120-132
Emneord [en]
acetylcholine; corticothalamic; claustrum; FoxP2; Ntsr1; visual cortex; RRID: MMRRC_030648-UCD; RRID: AB_10000240; RRID: AB_2313516; RRID: AB_2107107; RRID: SCR_002074
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-144137DOI: 10.1002/cne.24323ISI: 000418575500008PubMedID: 28884467OAI: oai:DiVA.org:liu-144137DiVA, id: diva2:1172503
Merknad

Funding Agencies|Swedish Research Council [3050, 2862]; Linkoping University

Tilgjengelig fra: 2018-01-10 Laget: 2018-01-10 Sist oppdatert: 2018-10-12
Inngår i avhandling
1. Neuromodulation, Short-Term and Long-Term Plasticity in Corticothalamic and Hippocampal Neuronal Networks
Åpne denne publikasjonen i ny fane eller vindu >>Neuromodulation, Short-Term and Long-Term Plasticity in Corticothalamic and Hippocampal Neuronal Networks
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Research in neuroscience relies to a large extent on the use of genetically modified animals. Extensive validation of new and existing models is a requirement for the acquisition of trustworthy data and to enable generalization to human physiology and disease. This thesis includes, as one part (project I and II), validation of a transgenic mouse model with the expression of the enzyme Cre-recombinase restricted to neurons in a band in the deepest layer of the cerebral cortex. Secondly, in project III we use this mouse model to study the process of short-term plasticity in neuronal cultures. Lastly, we investigate synaptic plasticity by studying the effect that the developmental signaling factor Hedgehog (Hh) has on mature hippocampal cultures (project IV). 

In project I and II, we identified the transgenic mouse Neurotensin receptor 1-Cre GN220 (Ntsr1-Cre) to have Cre expression targeted to the corticothalamic (CT) pyramidal neuron population in neocortical layer 6. Further, we identified a small group of Ntsr1-Cre positive neurons present in the white matter that is distinct from the CT population. We also identified that the transcription factor Forkhead box protein 2 (FoxP2) was specifically expressed by CT neurons in neocortex. In project I, we further explored the sensitivity of CT neurons to cholinergic modulation and found that they are sensitive to even low concentrations of acetylcholine. Both nicotinic and muscarinic acetylcholine receptors depolarize the neurons. Presenting CT neurons as a potential target for cholinergic modulation in wakefulness and arousal. 

In project III we studied Ntsr1-Cre neurons in cortical cultures and found that cultured neurons have similar properties to CT neurons in the intact nervous system. Ntsr1-Cre neurons in culture often formed synapses with itself, i. e. autapses, with short-term synaptic plasticity that was different to ordinary synapses. By expressing the light-controlled ion channel channelrhodopsin-2 (ChR2) in Ntsr1-Cre neurons we could compare paired pulse ratios with either electrical or light stimulation. Electrical stimulation typically produced paired-pulse facilitation while light stimulation produced paired pulse depression, presumably due to unphysiological Ca2+ influx in presynaptic terminals. Thus, cultured Ntsr1- Cre neurons can be used to study facilitation, and ChR2 could be used as a practical tool to further study the dependence of Ca2+ for short-term plasticity. 

In project IV we investigated the role of Hedgehog (Hh) for hippocampal neuron plasticity. Non-canonical Hh-signaling negatively regulated NMDA- receptor function through an unknown mechanism resulting in changes in NMDA-receptor mediated currents and subsequent changes in AMPA- receptors in an LTP/LTD manner in mature neurons. Proposing Hh as a slow-acting factor with ability to scale down excitation for instances of excessive activity, e.g. during an epileptic seizure, as a mechanism to make the activity in the neuronal networks stable. 

 

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 103
Serie
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1638
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-151986 (URN)10.3384/diss.diva-151986 (DOI)9789176852279 (ISBN)
Disputas
2018-11-16, Hasselquistsalen, Hus 511, Campus US, Linköping, 13:00
Opponent
Veileder
Tilgjengelig fra: 2018-10-12 Laget: 2018-10-12 Sist oppdatert: 2019-09-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Sundberg, SofieLindström, SarahSanchez, Gonzalo ManuelGranseth, Björn
Av organisasjonen
I samme tidsskrift
Journal of Comparative Neurology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 356 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf