liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multimodal Scale Estimation for Monocular Visual Odometry
Goethe Univ, Germany.
Goethe Univ, Germany.
Goethe Univ, Germany.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Goethe Univ, Germany.
2017 (engelsk)Inngår i: 2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), IEEE , 2017, s. 1714-1721Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Monocular visual odometry / SLAM requires the ability to deal with the scale ambiguity problem, or equivalently to transform the estimated unscaled poses into correctly scaled poses. While propagating the scale from frame to frame is possible, it is very prone to the scale drift effect. We address the problem of monocular scale estimation by proposing a multimodal mechanism of prediction, classification, and correction. Our scale correction scheme combines cues from both dense and sparse ground plane estimation; this makes the proposed method robust towards varying availability and distribution of trackable ground structure. Instead of optimizing the parameters of the ground plane related homography, we parametrize and optimize the underlying motion parameters directly. Furthermore, we employ classifiers to detect scale outliers based on various features (e.g. moments on residuals). We test our method on the challenging KITTI dataset and show that the proposed method is capable to provide scale estimates that are on par with current state-of-the-art monocular methods without using bundle adjustment or RANSAC.

sted, utgiver, år, opplag, sider
IEEE , 2017. s. 1714-1721
Serie
IEEE Intelligent Vehicles Symposium, ISSN 1931-0587
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-145828DOI: 10.1109/IVS.2017.7995955ISI: 000425212700266ISBN: 978-1-5090-4804-5 (tryckt)OAI: oai:DiVA.org:liu-145828DiVA, id: diva2:1192092
Konferanse
28th IEEE Intelligent Vehicles Symposium (IV)
Tilgjengelig fra: 2018-03-21 Laget: 2018-03-21 Sist oppdatert: 2025-02-07

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Mester, Rudolf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 228 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf