liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Morphology Determines Conductivity and Seebeck Coefficient in Conjugated Polymer Blends
Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-9879-3915
Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-7104-7127
2018 (engelsk)Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 11, s. 9638-9644Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The impact of nanoscale morphology on conductivity and Seebeck coefficient in p-type doped all-polymer blend systems is investigated. For a strongly phase separated system (P3HT:PTB7), we achieve a Seebeck coefficient that peaks at S similar to 1100 mu V/K with conductivity sigma similar to 3 x 10(-3) S/cm for 90% PTB7. In marked contrast, for well-mixed systems (P3HT:PTB7 with 5% diiodooctane (DIO), P3HT:PCPDTBT), we find an almost constant S similar to 140 mu V/K and sigma similar to 1 S/cm despite the energy levels being (virtually) identical in both cases. The results are interpreted in terms of a variable range hopping (VRH) model where a peak in S and a minimum in a arise when the percolation pathway contains both host and guest sites, in which the latter acts as energetic trap. For well-mixed blends of the investigated compositions, VRH enables percolation pathways that only involve isolated guest sites, whereas the large distance between guest clusters in phase separated blends enforces (energetically unfavorable) hops via the host. The experimentally observed trends are in good agreement with the results of atomistic kinetic Monte Carlo simulations accounting for the differences in nanoscale morphology.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC , 2018. Vol. 10, nr 11, s. 9638-9644
Emneord [en]
Seebeck coefficient; morphology; charge transport; conjugated polymers; kinetic Monte Carlo simulations
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-147581DOI: 10.1021/acsami.8b00122ISI: 000428356800052PubMedID: 29488380OAI: oai:DiVA.org:liu-147581DiVA, id: diva2:1201803
Merknad

Funding Agencies|China Scholarship Council (CSC)

Tilgjengelig fra: 2018-04-26 Laget: 2018-04-26 Sist oppdatert: 2018-05-18
Inngår i avhandling
1. Doping and Density of States Engineering for Organic Thermoelectrics
Åpne denne publikasjonen i ny fane eller vindu >>Doping and Density of States Engineering for Organic Thermoelectrics
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Thermoelectric materials can turn temperature differences directly into electricity. To use this to harvest e.g. waste heat with an efficiency that approaches the Carnot efficiency requires a figure of merit ZT larger than 1. Compared with their inorganic counterparts, organic thermoelectrics (OTE) have numerous advantages, such as low cost, large-area compatibility, flexibility, material abundance and an inherently low thermal conductivity. Therefore, organic thermoelectrics are considered by many to be a promising candidate material system to be used in lower cost and higher efficiency thermoelectric energy conversion, despite record ZT values for OTE currently lying around 0.25.

A complete organic thermoelectric generator (TEG) normally needs both p-type and n-type materials to form its electric circuit. Molecular doping is an effective way to achieve p- and ntype materials using different dopants, and it is necessary to fundamentally understand the doping mechanism. We developed a simple yet quantitative analytical model and compare it with numerical kinetic Monte Carlo simulations to reveal the nature of the doping effect. The results show the formation of a deep tail in the Gaussian density of states (DOS) resulting from the Coulomb potentials of ionized dopants. It is this deep trap tail that negatively influences the charge carrier mobility with increasing doping concentration. The trends in mobilities and conductivities observed from experiments are in good agreement with the modeling results, for a large range of materials and doping concentrations.

Having a high power factor PF is necessary for efficient TEG. We demonstrate that the doping method can heavily impact the thermoelectric properties of OTE. In comparison to conventional bulk doping, sequential doping can achieve higher conductivity by preserving the morphology, such that the power factor can improve over 100 times. To achieve TEG with high output power, not only a high PF is needed, but also having a significant active layer thickness is very important. We demonstrate a simple way to fabricate multi-layer devices by sequential doping without significantly sacrificing PF.

In addition to the application discussed above, harvesting large amounts of heat at maximum efficiency, organic thermoelectrics may also find use in low-power applications like autonomous sensors where voltage is more important than power. A large output voltage requires a high Seebeck coefficient. We demonstrate that density of states (DOS) engineering is an effective tool to increase the Seebeck coefficient by tailoring the positions of the Fermi energy and the transport energy in n- and p-type doped blends of conjugated polymers and small molecules.

In general, morphology heavily impacts the performance of organic electronic devices based on mixtures of two (or more) materials, and organic thermoelectrics are no exception. We experimentally find that the charge and energy transport is distinctly different in well-mixed and phase separated morphologies, which we interpreted in terms of a variable range hopping model. The experimentally observed trends in conductivity and Seebeck coefficient are reproduced by kinetic Monte Carlo simulations in which the morphology is accounted for.  

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. s. 67
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1934
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-147778 (URN)10.3384/diss.diva-147778 (DOI)9789176853115 (ISBN)
Disputas
2018-06-04, Planck, Fysikhuset, Campus Valla, Linköping, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-05-14 Laget: 2018-05-14 Sist oppdatert: 2019-12-11bibliografisk kontrollert

Open Access i DiVA

fulltext(1119 kB)28 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1119 kBChecksum SHA-512
86225b18952fa7bc4c6bffef518ebcfc2ea018c42f83a7e8bb0308898f92279f5f98e6a62e397052b1abaeca305eadc016db7fb8973819c9e692aad6e8594413
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Zuo, GuangzhengLiu, XianjieFahlman, MatsKemerink, Martijn
Av organisasjonen
I samme tidsskrift
ACS Applied Materials and Interfaces

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 28 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 239 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf