liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Scanning photocurrent microscopy of electrons and holes in the pigment semiconductor epindolidione
Ludwig Maximilian Univ Munchen, Germany; NIM, Germany.
Ludwig Maximilian Univ Munchen, Germany.
Ludwig Maximilian Univ Munchen, Germany.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-0280-8017
Vise andre og tillknytning
2018 (engelsk)Inngår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 60, s. 51-56Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photocurrent microscopy is used to characterize the kinetics of electrons and holes in organic field-effect transistors (FETs) with the hydrogen-bonded pigment epindolidione as active layer. The method relies on electrons and holes, generated on local illumination, which are provided after exciton splitting, to probe charge trapping. In the dark, hole conduction is observed for negative gate voltage while no electron conduction is observed for positive gate voltage. However, under illumination, a fast displacement current with 60 mu s onset time and 1 ms exponential decay occurs for positive gate voltage, which can be explained by exciton splitting underneath the semitransparent top contact followed by subsequent electron trapping and hole extraction. Afterward, trapped electrons hop via further trap states within the film to the insulator into interface traps (13 ms exponential decay) which induce a positive threshold voltage shift in the FET transfer curves for hole transport. Photocurrent microscopy confirms that the displacement current occurs only for illumination under and near the semitransparent source/drain contacts, which act here as metal-insulator-semiconductor (MIS) diodes. For negative gate voltage instead, the photocurrent comprises an enhanced hole current in the FET channel between the contacts. In the channel region, the detrapping of holes at the interface with the insulator (3 ms time constant) enhances the transistor current at low frequencies amp;lt; 1 kHz, whereas the displacement current between the contacts and the gate is observed only at frequencies amp;gt; 10 kHz. Thus, we show here that photocurrent microscopy allows to identify the kinetics of electrons and holes in traps close to the contacts and in the FET channel of pigment transistors.

sted, utgiver, år, opplag, sider
ELSEVIER SCIENCE BV , 2018. Vol. 60, s. 51-56
Emneord [en]
Photoresponse microscopy; Thin-film transistors; Charge-transport; Minority carriers; Majority carriers
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-149332DOI: 10.1016/j.orgel.2018.05.032ISI: 000434154500008OAI: oai:DiVA.org:liu-149332DiVA, id: diva2:1229852
Merknad

Funding Agencies|Bavarian Ministry for Science through the initiative "Solar Technologies Go Hybrid" (SolTech); Wallenberg Center for Molecular Medicine at Linkoping University

Tilgjengelig fra: 2018-07-02 Laget: 2018-07-02 Sist oppdatert: 2018-10-05

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Glowacki, Eric
Av organisasjonen
I samme tidsskrift
Organic electronics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 124 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf