liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite
Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor, Malaysia.
Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor, Malaysia; Nanotechnology and Nanomaterials Group, Materials Processing and Technology Laboratory, Institute of Advanced Technology, University Putra Malaysia, Selangor, Malaysia.
Nanotechnology and Nanomaterials Group, Materials Processing and Technology Laboratory, Institute of Advanced Technology, University Putra Malaysia, Selangor, Malaysia.
Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor, Malaysia; Nanotechnology and Nanomaterials Group, Materials Processing and Technology Laboratory, Institute of Advanced Technology, University Putra Malaysia, Selangor, Malaysia.
2014 (engelsk)Inngår i: Materials & Design, ISSN 0261-3069, Vol. 54, s. 660-669Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Hierarchically structured hybrid composites are ideal engineered materials to carry loads and stresses due to their high in-plane specific mechanical properties. Growing carbon nanotubes (CNTs) on the surface of high performance carbon fibres (CFs) provides a means to tailor the mechanical properties of the fibre–resin interface of a composite. The growth of CNT on CF was conducted via floating catalyst chemical vapor deposition (CVD). The mechanical properties of the resultant fibres, carbon nanotube (CNT) density and alignment morphology were shown to depend on the CNT growth temperature, growth time, carrier gas flow rate, catalyst amount, and atmospheric conditions within the CVD chamber. Carbon nanotube coated carbon fibre reinforced polypropylene (CNT-CF/PP) composites were fabricated and characterized. A combination of Halpin–Tsai equations, Voigt–Reuss model, rule of mixture and Krenchel approach were used in hierarchy to predict the mechanical properties of randomly oriented short fibre reinforced composite. A fractographic analysis was carried out in which the fibre orientation distribution has been analyzed on the composite fracture surfaces with Scanning Electron Microscope (SEM) and image processing software. Finally, the discrepancies between the predicted and experimental values are explained.

sted, utgiver, år, opplag, sider
Elsevier, 2014. Vol. 54, s. 660-669
Emneord [en]
Hybrid composite, Carbon nanotubes, Mechanical property, Chemical vapor deposition, Fibre orientation distribution
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-151324DOI: 10.1016/j.matdes.2013.08.063ISI: 000328690400083Scopus ID: 2-s2.0-84884392759OAI: oai:DiVA.org:liu-151324DiVA, id: diva2:1248851
Tilgjengelig fra: 2018-09-17 Laget: 2018-09-17 Sist oppdatert: 2018-09-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Aziz, Shazed
I samme tidsskrift
Materials & Design

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 93 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf