liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance Aspects in Millimeter-Wave Wireless  Networks
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.
2018 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The ever-growing data rate and comunications demand pose more challenges for the upcoming generations of mobile communications, i.e., fifth generation (5G) and beyond. To deal with these challenges, several solutions can be deployed, e.g., the use of massive amount of antennas at the transmitter and receiver nodes, the increase of cell density and the increase of the spectrum resources. More precisely, most of the current mobile networks and telecom operators mainly operate from 800 MHz to 6 GHz, however, this frequency range is probably not enough to face the growing traffic demand. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a promising solution to deal with the longstanding problem of spectrum scarcity. However, in comparison to lower frequency communications, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. The latter lead to frequent transmission interruptions when the signal path between the transmitter and the receiver, usually line-of-sight (LOS), is blocked. In this thesis, we present three papers that study several aspects of the mm-wave wireless networks and potential solutions to overcome the blockage issue and increase the reliability for the mm-wave communications. The first work studies the contribution of the reected beams for the communications in non line-of-sight (NLOS). This work provides a stochastic model that is able to evaluate the coverage probability not only considering the direct beam, but also including first order reections, which may contribute to the coverage probability in NLOS.

The second paper analyzes a possible solution to overcome the blockage issue that is the multi-connectivity (MC). This technique allows the user equipments (UEs) to establish and maintain connections with multiple cells/access points at the same time and it increases the number of possible available links per UE. In this scenario, we propose a novel link scheduling algorithm for network throughput maximization, and quantify the potential gain of MC for mm-wave cellular networks. The proposed algorithm is able to numerically approach the global optimum and overtakes the single connectivity schema in terms of network throughput.

Finally, in the third paper, we study a complementary approach to the multi-connectivity schema, i.e., the relying technique. In this work, we perform a throughput analysis of a relay-aided mm-wave wireless network. We consider two possible transmission strategies, by which the source nodes transmit either a packet to both the destination and the relay in the same timeslot (broadcast) or to only one of these two (destination or relay) by using directional transmissions. We analyze and show the optimal transmission strategy with respect to several system parameters, e.g., positions and number of the nodes, by taking into account the different beamforming gains and interference levels of the possible transmission strategies.  

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2018. , s. 22
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1821
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-151660ISBN: 9789176852088 (tryckt)OAI: oai:DiVA.org:liu-151660DiVA, id: diva2:1251796
Presentation
2018-10-03, TP54, Täppan, Campus Norrköping, Norrköping, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-09-28 Laget: 2018-09-28 Sist oppdatert: 2019-05-09bibliografisk kontrollert
Delarbeid
1. Beam Based Stochastic Model of the Coverage Probability in 5G Millimeter Wave Systems
Åpne denne publikasjonen i ny fane eller vindu >>Beam Based Stochastic Model of the Coverage Probability in 5G Millimeter Wave Systems
2017 (engelsk)Inngår i: 2017 15TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), IEEE , 2017Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Communications using frequency bands in the millimeter-wave range can play a key role in future generations of mobile networks. By allowing large bandwidth allocations, high carrier frequencies will provide high data rates to support the ever-growing capacity demand. The prevailing challenge at high frequencies is the mitigation of large path loss and link blockage effects. Highly directional beams are expected to overcome this challenge. In this paper, we propose a stochastic model for characterizing beam coverage probability. The model takes into account both line-of-sight and first-order non-line-of-sight reflections. We model the scattering environment as a stochastic process and we derive an analytical expression of the coverage probability for any given beam. The results derived are validated numerically and compared with simulations to assess the accuracy of the model.

sted, utgiver, år, opplag, sider
IEEE, 2017
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-142997 (URN)10.23919/WIOPT.2017.7959928 (DOI)000413806500067 ()978-3-9018-8290-6 (ISBN)
Konferanse
15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)
Merknad

Funding Agencies|European Unions Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [643002]

Tilgjengelig fra: 2017-11-13 Laget: 2017-11-13 Sist oppdatert: 2018-09-28
2. Maximum Throughput Scheduling for Multi-connectivity in Millimeter-Wave Networks
Åpne denne publikasjonen i ny fane eller vindu >>Maximum Throughput Scheduling for Multi-connectivity in Millimeter-Wave Networks
2018 (engelsk)Inngår i: 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt): International Workshop on Resource Allocation, Cooperation and Competition in Wireless Networks (RAWNET), IEEE, 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Multi-connectivity is emerging as promising solution to provide reliable communications and seamless connectivity at the millimeter-wave frequency range. Due to the obstacles that cause frequent interruptions at such high frequency range, connectivity to multiple cells can drastically increase the network performance in terms of throughput and reliability by coordi- nation among the network elements. In this paper, we propose an algorithm for the link scheduling optimization that maximizes the network throughput for multi-connectivity in millimeter-wave cellular networks. The considered approach exploits a centralized architecture, fast link switching, proactive context preparation and data forwarding between millimeter-wave access points and the users. The proposed algorithm is able to numerically approach the global optimum and to quantify the potential gain of multi-connectivity in millimeter-wave cellular networks. 

sted, utgiver, år, opplag, sider
IEEE, 2018
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-146211 (URN)10.23919/WIOPT.2018.8362891 (DOI)000434872700066 ()9783903176003 (ISBN)9781538646212 (ISBN)
Konferanse
16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Shanghai, China, May 7-11, 2018
Forskningsfinansiär
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsEU, Horizon 2020, 643002
Merknad

Funding agencies: European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [643002]; CENIIT

Tilgjengelig fra: 2018-04-02 Laget: 2018-04-02 Sist oppdatert: 2018-09-28

Open Access i DiVA

omslag(2706 kB)7 nedlastinger
Filinformasjon
Fil COVER01.pdfFilstørrelse 2706 kBChecksum SHA-512
9d00809e19bc17f463e9eb6af701f5b2601f3228b1a6935ce35d6b408f0cbed66ea86ea2e9f29fcd468e48805651058112bb49324ab0d28a51d55e18ef736e23
Type coverMimetype application/pdf

Personposter BETA

Tatino, Cristian

Søk i DiVA

Av forfatter/redaktør
Tatino, Cristian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 86 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf