liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of the dynamics of time-varying phase aberrations from time histories of the point-spread function
Delft Univ Technol, Netherlands.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Optical Society of America. Journal A: Optics, Image Science, and Vision, ISSN 1084-7529, E-ISSN 1520-8532, Vol. 36, nr 5, s. 809-817Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To optimally compensate for time-varying phase aberrations with adaptive optics, a model of the dynamics of the aberrations is required to predict the phase aberration at the next time step. We model the time-varying behavior of a phase aberration, expressed in Zernike modes, by assuming that the temporal dynamics of the Zernike coefficients can be described by a vector-valued autoregressive (VAR) model. We propose an iterative method based on a convex heuristic for a rank-constrained optimization problem, to jointly estimate the parameters of the VAR model and the Zernike coefficients from a time series of measurements of the point-spread function (PSF) of the optical system. By assuming the phase aberration is small, the relation between aberration and PSF measurements can be approximated by a quadratic function. As such, our method is a blind identification method for linear dynamics in a stochastic Wiener system with a quadratic nonlinearity at the output and a phase retrieval method that uses a time-evolution-model constraint and a single image at every time step. (c) 2019 Optical Society of America.

sted, utgiver, år, opplag, sider
OPTICAL SOC AMER , 2019. Vol. 36, nr 5, s. 809-817
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-157542DOI: 10.1364/JOSAA.36.000809ISI: 000466360700013PubMedID: 31045008OAI: oai:DiVA.org:liu-157542DiVA, id: diva2:1328672
Merknad

Funding Agencies|Seventh Framework Programme (FP7) [339681]; Vetenskapsradet (VR) [E05946CI]

Tilgjengelig fra: 2019-06-22 Laget: 2019-06-22 Sist oppdatert: 2019-11-27
Inngår i avhandling
1. Low-rank optimization in system identification
Åpne denne publikasjonen i ny fane eller vindu >>Low-rank optimization in system identification
2019 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, the use of low-rank approximations in connection with problems in system identification is explored. Firstly, the motivation of using low-rank approximations in system identification is presented and the framework for low-rank optimization is derived. Secondly, three papers are presented where different problems in system identification are considered within the described low-rank framework. In paper A, a novel method involving the nuclear norm forestimating a Wiener model is introduced. As shown in the paper, this method performs better than existing methods in terms of finding an accurate model. In paper B and C, a group lasso framework is used to perform input selection in the model estimation which also is connected to the low rank framework. The model structures where these novel methods of input selection is used on are ARX models and state space models, respectively. As shown in the respective papers, these strategies of performing input selection perform better than existing methods in both terms of estimation and input selection.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2019. s. 31
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1855
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-161286 (URN)10.3384/lic.diva-161286 (DOI)9789179299743 (ISBN)
Presentation
2019-11-08, Ada Lovelace, B-building, Campus Valla, Linköping, 10:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
EU, European Research Council, 339681Swedish Research Council, E05946CI
Tilgjengelig fra: 2019-10-28 Laget: 2019-10-28 Sist oppdatert: 2020-02-24bibliografisk kontrollert

Open Access i DiVA

fulltext(691 kB)1 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 691 kBChecksum SHA-512
bf0dd3bf2194f302e70c8910ae938d061f960581d973fe080295e96dd4e4b5ae30445cbb1e39fed9ab7009207d989015ec3d7012dc793082aa68a9fcde818044
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Klingspor, MånsHansson, AndersLöfberg, Johan
Av organisasjonen
I samme tidsskrift
Optical Society of America. Journal A: Optics, Image Science, and Vision

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 85 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf