liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Subsampling MCMC - an Introduction for the Survey Statistician
Univ New South Wales, Australia.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten. Stockholm Univ, Sweden.
Univ New South Wales, Australia.
Univ Sydney, Australia.
Vise andre og tillknytning
2018 (engelsk)Inngår i: SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, ISSN 0976-836X, Vol. 80, s. 33-69Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

The rapid development of computing power and efficient Markov Chain Monte Carlo (MCMC) simulation algorithms have revolutionized Bayesian statistics, making it a highly practical inference method in applied work. However, MCMC algorithms tend to be computationally demanding, and are particularly slow for large datasets. Data subsampling has recently been suggested as a way to make MCMC methods scalable on massively large data, utilizing efficient sampling schemes and estimators from the survey sampling literature. These developments tend to be unknown by many survey statisticians who traditionally work with non-Bayesian methods, and rarely use MCMC. Our article explains the idea of data subsampling in MCMC by reviewing one strand of work, Subsampling MCMC, a so called Pseudo-Marginal MCMC approach to speeding up MCMC through data subsampling. The review is written for a survey statistician without previous knowledge of MCMC methods since our aim is to motivate survey sampling experts to contribute to the growing Subsampling MCMC literature.

sted, utgiver, år, opplag, sider
SPRINGER , 2018. Vol. 80, s. 33-69
Emneord [en]
Pseudo-Marginal MCMC; Difference estimator; Hamiltonian Monte Carlo (HMC)
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-159023DOI: 10.1007/s13171-018-0153-7ISI: 000473089800003OAI: oai:DiVA.org:liu-159023DiVA, id: diva2:1338065
Merknad

Funding Agencies|Australian Research Council Center of Excellence [CE140100049]

Tilgjengelig fra: 2019-07-19 Laget: 2019-07-19 Sist oppdatert: 2021-07-26

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Villani, Mattias
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 76 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf