liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Compressed Sensing with Applications in Wireless Networks
Univ Oulu, Finland.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.
Univ Minnesota, USA.
2019 (engelsk)Inngår i: FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, ISSN 1932-8346, Vol. 13, nr 1-2Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Sparsity is an attribute present in a myriad of natural signals and systems, occurring either inherently or after a suitable projection. Such signals with lots of zeros possess minimal degrees of freedom and are thus attractive from an implementation perspective in wireless networks. While sparsity has appeared for decades in various mathematical fields, the emergence of compressed sensing (CS) - the joint sampling and compression paradigm - in 2006 gave rise to plethora of novel communication designs that can efficiently exploit sparsity. In this monograph, we review several CS frameworks where sparsity is exploited to improve the quality of signal reconstruction/detection while reducing the use of radio and energy resources by decreasing, e.g., the sampling rate, transmission rate, and number of computations. The first part focuses on several advanced CS signal reconstruction techniques along with wireless applications. The second part deals with efficient data gathering and lossy compression techniques in wireless sensor networks. Finally, the third part addresses CS-driven designs for spectrum sensing and multi-user detection for cognitive and wireless communications.

sted, utgiver, år, opplag, sider
NOW PUBLISHERS INC , 2019. Vol. 13, nr 1-2
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-164490DOI: 10.1561/2000000107ISI: 000500233800001OAI: oai:DiVA.org:liu-164490DiVA, id: diva2:1416431
Tilgjengelig fra: 2020-03-23 Laget: 2020-03-23 Sist oppdatert: 2020-04-24

Open Access i DiVA

fulltext(7982 kB)0 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 7982 kBChecksum SHA-512
a40ba0ad3fde779573ccc37473db2264277eb410efc721b68301b61e97a56b0201b0a6a61ea507397ddfd255f1b51cc73572daa3b5eac998d97c182d7d2f9bed
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Codreanu, Marian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf