liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Elements of Sequential Monte Carlo
Columbia Univ, USA.
Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
Uppsala Univ, Sweden.
2019 (engelsk)Inngår i: FOUNDATIONS AND TRENDS IN MACHINE LEARNING, ISSN 1935-8237, Vol. 12, nr 3, s. 187-306Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A core problem in statistics and probabilistic machine learning is to compute probability distributions and expectations. This is the fundamental problem of Bayesian statistics and machine learning, which frames all inference as expectations with respect to the posterior distribution. The key challenge is to approximate these intractable expectations. In this tutorial, we review sequential Monte Carlo (SMC), a random-sampling-based class of methods for approximate inference. First, we explain the basics of SMC, discuss practical issues, and review theoretical results. We then examine two of the main user design choices: the proposal distributions and the so called intermediate target distributions. We review recent results on how variational inference and amortization can be used to learn efficient proposals and target distributions. Next, we discuss the SMC estimate of the normalizing constant, how this can be used for pseudo-marginal inference and inference evaluation. Throughout the tutorial we illustrate the use of SMC on various models commonly used in machine learning, such as stochastic recurrent neural networks, probabilistic graphical models, and probabilistic programs.

sted, utgiver, år, opplag, sider
NOW PUBLISHERS INC , 2019. Vol. 12, nr 3, s. 187-306
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-164491DOI: 10.1561/2200000074ISI: 000500235400001OAI: oai:DiVA.org:liu-164491DiVA, id: diva2:1416453
Tilgjengelig fra: 2020-03-23 Laget: 2020-03-23 Sist oppdatert: 2020-06-02

Open Access i DiVA

fulltext(838 kB)0 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 838 kBChecksum SHA-512
b83219d49a03f43cb6c9464310c21413ff41c71eeae12cff2fd093e461a05314b19ce99b7b20986bd94b6440c40abb7dd06d91b09c1433e07d59715ff15e1dee
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Lindsten, Fredrik

Søk i DiVA

Av forfatter/redaktør
Lindsten, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf