liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Formal Verification of Input-Output Mappings of Tree Ensembles
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten. (Real-Time Systems Laboratory)
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-1485-0802
2020 (engelsk)Inngår i: Science of Computer Programming, ISSN 0167-6423, E-ISSN 1872-7964, Vol. 194Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent advances in machine learning and artificial intelligence are now beingconsidered in safety-critical autonomous systems where software defects maycause severe harm to humans and the environment. Design organizations in thesedomains are currently unable to provide convincing arguments that their systemsare safe to operate when machine learning algorithms are used to implement theirsoftware.

In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments.

This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20.Our work also studies the limitations of the method with high-dimensionaldata and preliminarily investigates the trade-off between large number of trees and time taken for verification.

sted, utgiver, år, opplag, sider
2020. Vol. 194
Emneord [en]
Formal verification, Decision tree, Tree ensemble, Random forest, Gradient boosting machine
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-164563DOI: 10.1016/j.scico.2020.102450OAI: oai:DiVA.org:liu-164563DiVA, id: diva2:1416647
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)Tilgjengelig fra: 2020-03-24 Laget: 2020-03-24 Sist oppdatert: 2020-04-24

Open Access i DiVA

Fulltekst tilgjengelig fra 2022-03-19 12:13
Tilgjengelig fra 2022-03-19 12:13

Andre lenker

Forlagets fulltekst

Personposter BETA

Törnblom, JohnNadjm-Tehrani, Simin

Søk i DiVA

Av forfatter/redaktør
Törnblom, JohnNadjm-Tehrani, Simin
Av organisasjonen
I samme tidsskrift
Science of Computer Programming

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf