liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Complexity of Boolean Surjective General-Valued CSPs
Univ Oxford, England.
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten.
Univ Oxford, England.
2019 (engelsk)Inngår i: ACM Transactions on Computation Theory, ISSN 1942-3454, E-ISSN 1942-3462, Vol. 11, nr 1, artikkel-id 4Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a (Q boolean OR{infinity})-valued objective function given as a sum of fixed-arity functions. In Boolean surjective VCSPs, variables take on labels from D = {0, 1}, and an optimal assignment is required to use both labels from D. Examples include the classical global Min-Cut problem in graphs and the Minimum Distance problem studied in coding theory. We establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs with respect to exact solvability. Our work generalises the dichotomy for {0, infinity}-valued constraint languages (corresponding to surjective decision CSPs) obtained by Creignou and Hebrard. For the maximisation problem of Q(amp;gt;= 0)-valued surjective VCSPs, we also establish a dichotomy theorem with respect to approximability. Unlike in the case of Boolean surjective (decision) CSPs, there appears a novel tractable class of languages that is trivial in the non-surjective setting. This newly discovered tractable class has an interesting mathematical structure related to downsets and upsets. Our main contribution is identifying this class and proving that it lies on the borderline of tractability. A crucial part of our proof is a polynomial-time algorithm for enumerating all near-optimal solutions to a generalised Min-Cut problem, which might be of independent interest.

sted, utgiver, år, opplag, sider
ASSOC COMPUTING MACHINERY , 2019. Vol. 11, nr 1, artikkel-id 4
Emneord [en]
Constraint satisfaction problems; surjective CSP; valued CSP; min-cut; polymorphisms; multimorphisms
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-164517DOI: 10.1145/3282429ISI: 000456801800004OAI: oai:DiVA.org:liu-164517DiVA, id: diva2:1416768
Merknad

Funding Agencies|Royal Society Research GrantRoyal Society of London; Royal Society University Research FellowshipRoyal Society of London; European Research Council (ERC) under the European UnionEuropean Research Council (ERC) [714532]

Tilgjengelig fra: 2020-03-25 Laget: 2020-03-25 Sist oppdatert: 2020-03-25

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Uppman, Hannes

Søk i DiVA

Av forfatter/redaktør
Uppman, Hannes
Av organisasjonen
I samme tidsskrift
ACM Transactions on Computation Theory

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf