liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Centralized and Distributed Power Allocation for Max-Min Fairness in Cell-Free Massive MIMO
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-5954-434X
Univ Pisa, Italy.
2019 (engelsk)Inngår i: CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEE , 2019, s. 576-580Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cell-free Massive MIMO systems consist of a large number of geographically distributed access points (APs) that serve users by coherent joint transmission. Downlink power allocation is important in these systems, to determine which APs should transmit to which users and with what power. If the system is implemented correctly, it can deliver a more uniform user performance than conventional cellular networks. To this end, previous works have shown how to perform system-wide max-min fairness power allocation when using maximum ratio precoding. In this paper, we first generalize this method to arbitrary precoding, and then train a neural network to perform approximately the same power allocation but with reduced computational complexity. Finally, we train one neural network per AP to mimic system-wide max-min fairness power allocation, but using only local information. By learning the structure of the local propagation environment, this method outperforms the state-of-the-art distributed power allocation method from the Cell-free Massive MIMO literature.

sted, utgiver, år, opplag, sider
IEEE , 2019. s. 576-580
Serie
Conference Record of the Asilomar Conference on Signals Systems and Computers, ISSN 1058-6393
Emneord [en]
Cell-free Massive MIMO; Power allocation; Max-min fairness; Deep learning; Scalability
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-168230DOI: 10.1109/IEEECONF44664.2019.9048903ISI: 000544249200112ISBN: 978-1-7281-4300-2 (digital)OAI: oai:DiVA.org:liu-168230DiVA, id: diva2:1459394
Konferanse
53rd Asilomar Conference on Signals, Systems, and Computers
Merknad

Funding Agencies|Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation

Tilgjengelig fra: 2020-08-19 Laget: 2020-08-19 Sist oppdatert: 2020-08-19

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Chakraborty, SucharitaBjörnson, Emil
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 69 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf