liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictors of Sickness Absence in a Clinical Population With Chronic Pain
Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden; School of Health and Welfare, Dalarna University, Falun, Sweden.
Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).ORCID-id: 0000-0002-3955-0443
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för prevention, rehabilitering och nära vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Smärt och rehabiliteringscentrum.ORCID-id: 0000-0002-1607-187X
School of Health and Welfare, Dalarna University, Falun, Sweden.
Vise andre og tillknytning
2021 (engelsk)Inngår i: Journal of Pain, ISSN 1526-5900, E-ISSN 1528-8447, Vol. 22, nr 10, s. 1180-1194Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Chronic pain-related sickness absence is an enormous socioeconomic burden globally. Optimized interventions are reliant on a lucid understanding of the distribution of social insurance benefits and their predictors. This register-based observational study analyzed data for a 7-year period from a population-based sample of 44,241 chronic pain patients eligible for interdisciplinary treatment (IDT) at specialist clinics. Sequence analysis was used to describe the sickness absence over the complete period and to separate the patients into subgroups based on their social insurance benefits over the final 2 years. The predictive performance of features from various domains was then explored with machine learning-based modeling in a nested cross-validation procedure. Our results showed that patients on sickness absence increased from 17% 5 years before to 48% at the time of the IDT assessment, and then decreased to 38% at the end of follow-up. Patients were divided into 3 classes characterized by low sickness absence, sick leave, and disability pension, with eight predictors of class membership being identified. Sickness absence history was the strongest predictor of future sickness absence, while other predictors included a 2008 policy, age, confidence in recovery, and geographical location. Information on these features could guide personalized intervention in the specialized healthcare. PERSPECTIVE: This study describes sickness absence in patients who visited a Swedish pain specialist interdisciplinary treatment clinic during the period 2005 to 2016. Predictors of future sickness absence are also identified that should be considered when adapting IDT programs to the patient's needs.

sted, utgiver, år, opplag, sider
Philadelphia, PA, United States: Churchill Livingstone , 2021. Vol. 22, nr 10, s. 1180-1194
Emneord [en]
Chronic pain, epidemiology, machine learning, productivity loss, sickness absence
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-177214DOI: 10.1016/j.jpain.2021.03.145ISI: 000705022800004PubMedID: 33819574Scopus ID: 2-s2.0-85105356711OAI: oai:DiVA.org:liu-177214DiVA, id: diva2:1571644
Merknad

Funding: Swedish Research Council (Vetenskapsradet)Swedish Research Council [2015-02512]; Swedish Research Council for Health Working Life & Welfare (Forte) [FORTE: 2016-07414, 2017-00177]

Tilgjengelig fra: 2021-06-22 Laget: 2021-06-22 Sist oppdatert: 2025-02-20bibliografisk kontrollert

Open Access i DiVA

fulltext(2039 kB)198 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2039 kBChecksum SHA-512
de08b51832f1f85b5235948efe127f60ec0696a221d6744a33361baa87efe32cf90fe30f87104dfb3be03f56b4715dc41d92d5e70470190ed9ba98b94405e74d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Dahlström, ÖrjanBjörk, MathildaGerdle, Björn

Søk i DiVA

Av forfatter/redaktør
Dahlström, ÖrjanBjörk, MathildaGerdle, Björn
Av organisasjonen
I samme tidsskrift
Journal of Pain

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 198 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 127 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf