liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Local bilinear computation of Jacobi sets
Univ Stuttgart VISUS, Germany.
Univ Stuttgart VISUS, Germany.
Univ Utah SCI, UT USA.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-7285-0483
Vise andre og tillknytning
2022 (engelsk)Inngår i: The Visual Computer, ISSN 0178-2789, E-ISSN 1432-2315, Vol. 38, s. 3435-3448Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization. Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a number of synthetic and real-world examples.

sted, utgiver, år, opplag, sider
Springer , 2022. Vol. 38, s. 3435-3448
Emneord [en]
Jacobi set; Topological data analysis; Multi-fields; Visualization techniques
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-187499DOI: 10.1007/s00371-022-02557-4ISI: 000819263900001OAI: oai:DiVA.org:liu-187499DiVA, id: diva2:1690130
Merknad

Funding Agencies|Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [DFG 270852890-GRK 2160/2, DFG 251654672-TRR 161]; Swedish Research Council (VR) [2019-05487]; U.S. Department of Energy (DOE) [DOE DE-SC0021015]; National Science Foundation (NSF) [NSF IIS-1910733]

Tilgjengelig fra: 2022-08-25 Laget: 2022-08-25 Sist oppdatert: 2023-02-28bibliografisk kontrollert

Open Access i DiVA

fulltext(3871 kB)69 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3871 kBChecksum SHA-512
45932476a162765f27fdf3a33a04d1dbf416b80656f87030a1f75122d178189c16f9ab868587f80975382a88ccff56c1e13afa09b690d3d29905f935b785e64d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Hotz, Ingrid

Søk i DiVA

Av forfatter/redaktør
Hotz, Ingrid
Av organisasjonen
I samme tidsskrift
The Visual Computer

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 69 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf