liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Benchmark Data Generation for Feature Tracking in Scalar Fields
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
TU Kaiserslautern, Germany.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0001-5352-1086
TU Kaiserslautern, Germany.
Vise andre og tillknytning
2022 (engelsk)Inngår i: 2022 IEEE WORKSHOP ON TOPOLOGICAL DATA ANALYSIS AND VISUALIZATION (TOPOINVIS 2022), IEEE , 2022, s. 103-112Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We describe a benchmark data generator for tracking methods for two- and three-dimensional time-dependent scalar fields. More and more topology-based tracking methods are presented in the visualization community, but the validation and evaluation of the tracking results are currently limited to qualitative visual approaches. We present a pipeline for creating different ground truth features that support evaluating tracking methods based on quantitative measures. In short, our approach randomly simulates a temporal point cloud with birth, death, split, merge, and continuation events, where the points are then used to derive a scalar field whose topological features correspond to the points. These scalar fields can be used as the input for different tracking methods, where the computed tracks can be compared against the ground truth feature evolution. This approach facilitates directly comparing the results of different tracking methods, independent of the initial feature characterization.

sted, utgiver, år, opplag, sider
IEEE , 2022. s. 103-112
Emneord [en]
Human-centered computing; Visualization; Visualization design and evaluation methods; Human-centered computing; Visualization; Visualization application domains; Scientific visualization
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-191882DOI: 10.1109/TopoInVis57755.2022.00017ISI: 000913326500011ISBN: 9781665493543 (digital)ISBN: 9781665493550 (tryckt)OAI: oai:DiVA.org:liu-191882DiVA, id: diva2:1738720
Konferanse
IEEE VIS Workshop on Topological Data Analysis and Visualization (TopoInVis), Oklahoma City, OK, oct 17, 2022
Merknad

Funding Agencies|SeRC (Swedish e-Science Research Center); ELLIIT environment for strategic research in Sweden; Swedish Research Council (VR) [2019-05487]

Tilgjengelig fra: 2023-02-22 Laget: 2023-02-22 Sist oppdatert: 2023-06-09

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Nilsson, EmmaMasood, Talha BinHotz, Ingrid

Søk i DiVA

Av forfatter/redaktør
Nilsson, EmmaMasood, Talha BinHotz, Ingrid
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 340 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf