liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Brain Parcellation Repeatability and Reproducibility Using Conventional and Quantitative 3D MR Imaging
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. SyntheticMR, Linkoping, Sweden.
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.ORCID-id: 0000-0001-8661-2232
Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
2023 (engelsk)Inngår i: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 44, nr 8, s. 910-915Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

BACKGROUND AND PURPOSE: Automatic brain parcellation is typically performed on dedicated MR imaging sequences, which require valuable examination time. In this study, a 3D MR imaging quantification sequence to retrieve R-1 and R-2 relaxation rates and proton density maps was used to synthesize a T1-weighted image stack for brain volume measurement, thereby combining image data for multiple purposes. The repeatability and reproducibility of using the conventional and synthetic input data were evaluated.MATERIALS AND METHODS: Twelve subjects with a mean age of 54?years were scanned twice at 1.5T and 3T with 3D-QALAS and a conventionally acquired T1-weighted sequence. Using SyMRI, we converted the R-1, R-2, and proton density maps into synthetic T1-weighted images. Both the conventional T1-weighted and the synthetic 3D-T1-weighted inversion recovery images were processed for brain parcellation by NeuroQuant. Bland-Altman statistics were used to correlate the volumes of 12 brain structures. The coefficient of variation was used to evaluate the repeatability.RESULTS: A high correlation with medians of 0.97 for 1.5T and 0.92 for 3T was found. A high repeatability was shown with a median coefficient of variation of 1.2% for both T1-weighted and synthetic 3D-T1-weighted inversion recovery at 1.5T, and 1.5% for T1-weighted imaging and 4.4% for synthetic 3D-T1-weighted inversion recovery at 3T. However, significant biases were observed between the methods and field strengths.CONCLUSIONS: It is possible to perform MR imaging quantification of R-1, R-2, and proton density maps to synthesize a 3D-T1-weighted image stack, which can be used for automatic brain parcellation. Synthetic parameter settings should be reinvestigated to reduce the observed bias.

sted, utgiver, år, opplag, sider
AMER SOC NEURORADIOLOGY , 2023. Vol. 44, nr 8, s. 910-915
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-196705DOI: 10.3174/ajnr.A7937ISI: 001024499700001PubMedID: 37414454OAI: oai:DiVA.org:liu-196705DiVA, id: diva2:1789618
Tilgjengelig fra: 2023-08-21 Laget: 2023-08-21 Sist oppdatert: 2024-04-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Warntjes, Marcel Jan BertusLundberg, PeterTisell, Anders
Av organisasjonen
I samme tidsskrift
American Journal of Neuroradiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 80 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf