liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Burstormer: Burst Image Restoration and Enhancement Transformer
Mohamed Bin Zayed Univ AI, U Arab Emirates.
Incept Inst AI, U Arab Emirates.
Mohamed Bin Zayed Univ AI, U Arab Emirates; Australian Natl Univ, Australia.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Mohamed Bin Zayed Univ AI, U Arab Emirates.
Vise andre og tillknytning
2023 (engelsk)Inngår i: 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, IEEE COMPUTER SOC , 2023, s. 5703-5712Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoodsf or information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. Aft er multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst sampling module. Finally, the inter-frame information is aggregated using the proposed burst feature fusion module followed by progressive upsampling. Our Burstormer outperforms state-of-the-art methods on burst super-resolution, burst denoising and burst low-light enhancement. Our codes and pre-trained models are available at https://github.com/akshaydudhane16/Burstormer.

sted, utgiver, år, opplag, sider
IEEE COMPUTER SOC , 2023. s. 5703-5712
Serie
IEEE Conference on Computer Vision and Pattern Recognition, ISSN 1063-6919, E-ISSN 2575-7075
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-199149DOI: 10.1109/CVPR52729.2023.00552ISI: 001058542606005ISBN: 9798350301298 (digital)ISBN: 9798350301304 (tryckt)OAI: oai:DiVA.org:liu-199149DiVA, id: diva2:1811866
Konferanse
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, CANADA, jun 17-24, 2023
Tilgjengelig fra: 2023-11-14 Laget: 2023-11-14 Sist oppdatert: 2025-02-07

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Khan, Fahad
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf