liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
Research Institute for Technical Physics and Materials Science, Budapest, Hungary.
National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-1744-7322
2004 (engelsk)Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 22, nr 1, s. 117-121Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Radio frequency sputtering has been used to deposit -alumina (-Al2O3) thin films at substrate temperatures of 280–560 °C. The films are shown to be single phased and hard. Nanoindentation gives values of 306±31 and 27±3 GPa for elastic modulus and hardness, respectively, for a substrate temperature of 280 °C. Growth of the phase was achieved by in situ predeposition of a chromia template layer. Chromia crystallizes in the same hexagonal structure as -alumina, with a lattice mismatch of 4.1% in the a- and 4.6% in the c-parameter, and is shown to nucleate readily on the amorphous substrates (silicon with a natural oxide layer). This results in local epitaxy of -alumina on the chromia layer, as is shown by transmission electron microscopy. The alumina grains are columnar with grain widths increasing from 22±7 to 41±9 nm, as the temperature increases from 280 to 560 °C. This is consistent with a surface diffusion dominated growth mode and suggests that -alumina deposition at low temperatures is possible once initial grain nucleation has occurred. Results are also presented demonstrating chromia/-alumina growth on a technological substrate (Haynes230 Ni-based super alloy, Haynes International, Inc.).

sted, utgiver, år, opplag, sider
2004. Vol. 22, nr 1, s. 117-121
Emneord
alumina, chromium compounds, sputtered coatings, indentation, elastic moduli, hardness, sputter deposition, transmission electron microscopy, epitaxial layers, grain size, surface diffusion, nucleation, wear resistant coatings, thermal barrier coatings
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-13578DOI: 10.1116/1.1636157OAI: oai:DiVA.org:liu-13578DiVA, id: diva2:20982
Tilgjengelig fra: 2008-11-13 Laget: 2008-09-29 Sist oppdatert: 2017-12-13
Inngår i avhandling
1. Controlling the Formation and Stability of Alumina Phases
Åpne denne publikasjonen i ny fane eller vindu >>Controlling the Formation and Stability of Alumina Phases
2005 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this work, physical phenomena related to the growth and phase formation of alumina, Al2O3, are investigated by experiments and computer calculations. Alumina finds applications in a wide variety of areas, due to many beneficial properties and several existing crystalline phases. For example, the α and κ phases are widely used as wear-resistant coatings due to their hardness and thermal stability, while, e.g., the metastable γ and θ phases find applications as catalysts or catalyst supports, since their surface energies are low and, hence, they have large surface areas available for catalytic reactions.

The metastable phases are involved in transition sequences, which all irreversibly end in the transformation to the stable α phase at about 1050 °C. As a consequence, the metastable aluminas, which can be grown at low temperatures, cannot be used in high temperature applications, since they are destroyed by the transformation into α. In contrast, α-alumina, which is the only thermodynamically stable phase, typically require high growth temperatures (~1000 °C), prohibiting the use of temperature sensitive substrates. Thus, there is a need for increasing the thermal stability of metastable alumina and decreasing the growth temperature of the α phase.

In the experimental part of this work, hard and single-phased α-alumina thin films were grown by magnetron sputtering at temperatures down to 280 °C. This dramaticdecrease in growth temperature was achieved by two main factors. Firstly, the nucleation stage of growth was controlled by pre-depositing a chromia “template” layer, which is demonstrated to promote nucleation of α-alumina. Secondly, it is shown that energetic bombardment was needed to sustain growth of the α phase. Energy-resolved mass spectrometry measurements demonstrate that the likely source of energetic bombardment, in the present case, was oxygen ions/atoms originating from the target surface. Overall, these results demonstrate that low-temperature α-alumina growth is possible by controlling both the nucleation step of growth as well as the energetic bombardment of the growing film. In addition, the mass spectrometry studies showed that a large fraction of the deposition flux consisted of AlO molecules, which were sputtered from the target. Since the film is formed by chemical bonding between the depositing species, this observation is important for the fundamental understanding of alumina thin film growth.

In the computational part of the work, the effect of additives on the phase stability of α- and θ-alumina was investigated by density functional theory calculations. A systematic study was performed of a large number of substitutional dopants in the alumina lattices. Most tested dopants tended to reverse the stability between α- and θ-alumina; so that, e.g., Modoping made the θ phase energetically favored. Thus, it is possible to stabilize the metastable phases by additives. An important reason for this is the physical size of the dopant ions with respect to the space available within the alumina lattices. For example, large ions induced θ stabilization, while ions only slightly larger than Al, e.g., Co and Cu, gave a slight increase in the relative stability of the α phase. We also studied the stability of some of these compounds with respect to pure alumina and other phases, containing the dopants, with the result that phase separations are energetically favored and will most likely occur at elevated temperatures.

sted, utgiver, år, opplag, sider
Institutionen för fysik, kemi och biologi, 2005
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 987
Emneord
thin films, alumina, magnetron sputtering, phase stability, density functional theory
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-5038 (URN)91-85457-71-X (ISBN)
Disputas
2005-12-15, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2005-12-13 Laget: 2005-12-13 Sist oppdatert: 2013-10-30

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Andersson, Jon M.Helmersson, Ulf

Søk i DiVA

Av forfatter/redaktør
Andersson, Jon M.Helmersson, Ulf
Av organisasjonen
I samme tidsskrift
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 454 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf