liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
BRICHOS - a superfamily of multidomain proteins with diverse functions.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska högskolan.
Dept of Anatomy, Physiology and Biochemistry, The Biomedical Centre, Box 575, S-751 23 Uppsala, Sweden.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska högskolan.
2009 (engelsk)Inngår i: BMC research notes, ISSN 1756-0500, Vol. 2, s. 180-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

ABSTRACT: BACKGROUND: The BRICHOS domain has been found in 8 protein families with a wide range of functions and a variety of disease associations, such as respiratory distress syndrome, dementia and cancer. The domain itself is thought to have a chaperone function, and indeed three of the families are associated with amyloid formation, but its structure and many of its functional properties are still unknown. FINDINGS: The proteins in the BRICHOS superfamily have four regions with distinct properties. We have analysed the BRICHOS proteins focusing on sequence conservation, amino acid residue properties, native disorder and secondary structure predictions. Residue conservation shows large variations between the regions, and the spread of residue conservation between different families can vary greatly within the regions. The secondary structure predictions for the BRICHOS proteins show remarkable coherence even where sequence conservation is low, and there seems to be little native disorder. CONCLUSIONS: The greatly variant rates of conservation indicates different functional constraints among the regions and among the families. We present three previously unknown BRICHOS families; group A, which may be ancestral to the ITM2 families; group B, which is a close relative to the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family. The C-terminal region of group C has nearly identical sequences in all species ranging from fish to man and is seemingly unique to this family, indicating critical functional or structural properties.

sted, utgiver, år, opplag, sider
2009. Vol. 2, s. 180-
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-21338DOI: 10.1186/1756-0500-2-180PubMedID: 19747390OAI: oai:DiVA.org:liu-21338DiVA, id: diva2:241081
Merknad
Original Publication: Joel Hedlund, Jan Johansson and Bengt Persson, BRICHOS - a superfamily of multidomain proteins with diverse functions., 2009, BMC research notes, (2), 180. http://dx.doi.org/10.1186/1756-0500-2-180 Licensee: BioMed Central http://www.biomedcentral.com/ Tilgjengelig fra: 2009-10-01 Laget: 2009-10-01 Sist oppdatert: 2010-11-17
Inngår i avhandling
1. Bioinformatic protein family characterisation
Åpne denne publikasjonen i ny fane eller vindu >>Bioinformatic protein family characterisation
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Biological research is necessary; not only to further our understanding of the processes of life, but also to combat disease, hunger and environmental damage.

Bioinformatics is the science of handling biological information. It entails integrating, structuring and analysing the ever-increasing amounts of available biological data. In practise it means using computers to analyse huge amounts of very complicated data taken from a field that is only partially understood, to see the hidden trends and connections, and to draw useful conclusions.

My thesis work has mainly concerned the study of protein families, which are groups of evolutionarily related proteins. I have analysed known protein families and created predictive models for them, and developed algorithms for defining new protein families. My principal techniques have been sequence alignments and hidden Markov models (HMM). To aid my work, I have written a lot of software, including MSAView, a visualiser for multiple sequence alignments (MSA).

In this thesis, the protein family of inorganic pyrophosphatases (H+-PPases) is studied, as well as the two protein superfamilies BRICHOS and MDR (medium-chain dehydrogenases/reductases). The H+-PPases are tightly membrane bound, proton pumping, dimeric enzymes with ~700-residue subunits and found in bacteria, plants and eukaryotic parasites, and which use pyrophosphate as an alternative to ATP. The BRICHOS superfamily is only present in higher eukaryotes, but encompasses at least 8 protein families with a wide range of functions and disease associations, such as respiratory distress syndrome, dementia and cancer. The sequences are typically ~200 residues with even shorter functional forms. Finally, MDR, is a large and complex protein superfamily; it currently has over 16000 members, it is present in all kingdoms of life, the pairwise sequence identity is typically around 25 %, the chain lengths vary as does the oligomericity, and the members are partaking in a multitude of biological processes. The member families include the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase, and many more forms. There are at least 25 human MDR genes excluding close homologues. There are HMMs available for detecting MDR superfamily membership, but none for the individual families.

For the H+-PPase family, we characterised member sequences found using an HMM of a conserved 57-residue region thought to form part of the active site. This region was found to contain two highly conserved nonapeptides, mainly consisting of the four “very early” residues Gly, Ala, Val and Asp, compatible with an ancient origin of the family. The two patterns have charged amino acid residues at positions 1, 5 and 9, are apparent binding sites for the substrate and parts of the active site, and were shown to be so specific for these enzymes that they can be used for automated annotation of new sequences.

For the BRICHOS superfamily, we were able to find three previously unknown member families; group A, which may be ancestral to the ITM2 families (integral membrane protein 2); group B, which is a close relative to the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family. The C-terminal region of group C has nearly identical sequences in all species ranging from fish to man and is seemingly unique to this family, indicating critical functional or structural properties.

For the MDR superfamily, we characterised and built stable HMMs for 17 member families using an empiric approach. From our experiences we were able to develop an algorithm for automated HMM refinement that uses relationships in data to produce stable and reliable classifiers, and we used it to produce HMMs for 86 distinct MDR families. We have made the program freely available and it can be readily applied to other protein families. We also developed a web site (http://mdr–enzymes.org) that makes our findings directly useful also for non-bioinformaticians.

In our analyses of the 86 families, we found that MDR forms with 2 Zn2+ ions in general are dehydrogenases, while MDR forms with no Zn2+ in general are reductases. Furthermore, in Bacteria, MDRs without Zn2+ are more frequent than those with Zn2+, while the opposite is true for eukaryotic MDRs, indicating that Zn2+ has been recruited into the MDR superfamily after the initial life kingdom separations.

Multiple sequence alignments (MSA) play a central part in most work on protein families, and are integral to many bioinformatic methods. With the ongoing explosive increase of available sequence data, the scales of bioinformatic projects are growing, and efficient and human-friendly data visualisation becomes increasingly challenging, but is still essential for making new interpretations and discovering unexpected properties of the data.

Ideally, visualisation should be comprehensive and detailed, and never distract with irrelevant information. It needs to offer natural and responsive ways of exploring the data, as well as provide consistent views in order to facilitate comparisons between datasets. I therefore developed MSAView, which is a fast, modular, configurable and extensible package for analysing and visualising MSAs and sequence features. It has a graphical user interface and a powerful command line client, and can be imported as a package into any Python program. It has a plugin architecture and a user extendable preset library. It can integrate and display data from online sources and launch external viewers for showing additional details. It also includes two new conservation measures; alignment divergences, which indicate atypical residues or deletions, and sequence conformances, which highlight sequences that differ from their siblings at crucial positions.

In conclusion, this thesis details my work in analysing two protein superfamilies and one protein family using bioinformatic methods; developing an algorithm for automated generation of stable and reliable HMMs, as well as a new conservation measure, and a software platform for working with aligned sequences.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2010. s. 105
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1343
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-61754 (URN)978-91-7393-297-4 (ISBN)
Disputas
2010-12-10, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:00
Opponent
Veileder
Tilgjengelig fra: 2010-11-17 Laget: 2010-11-17 Sist oppdatert: 2020-02-19bibliografisk kontrollert

Open Access i DiVA

fulltekst(2067 kB)356 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2067 kBChecksum SHA-512
bea314f076ad811ec369a2e4816eb97381bc53e9e2ee788d04c45910b918127ea8e47a507e6cbac88be9b4490d55b272e382130cc1132f88b30055fc1adaa07f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Person

Hedlund, JoelPersson, Bengt

Søk i DiVA

Av forfatter/redaktør
Hedlund, JoelPersson, Bengt
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 356 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 293 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf