liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A tensor-like representation for averaging, filtering and interpolation of 3D object orientation data
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, USA.
Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, USA.
Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, USA.
Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.ORCID-id: 0000-0002-9091-4724
2005 (engelsk)Inngår i: Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:3 ), 2005, s. 1092-1095Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Averaging, filtering and interpolation of 3-D object orientation data is important in both computer vision and computer graphics, for instance to smooth estimates of object orientation and interpolate between keyframes in computer animation. In this paper we present a novel framework in which the non-linear nature of these problems is avoided by embedding the manifold of 3-D orientations into a 16-dimensional Euclidean space. Linear operations performed in the new representation can be shown to be rotation invariant, and defining a projection back to the orientation manifold results in optimal estimates with respect to the Euclidean metric. In other words, standard linear filters, interpolators and estimators may be applied to orientation data, without the need for an additional machinery to handle the non-linear nature of the problems. This novel representation also provides a way to express uncertainty in 3-D orientation, analogous to the well known tensor representation for lines and hyperplanes.

sted, utgiver, år, opplag, sider
2005. s. 1092-1095
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-28793DOI: 10.1109/ICIP.2005.1530586Lokal ID: 13978ISBN: 0-7803-9134-9 (tryckt)OAI: oai:DiVA.org:liu-28793DiVA, id: diva2:249605
Konferanse
12th IEEE International Conference on Image Processing (ICIP 2005), Genova, Italy, 11 Sep - 14 Sep 2005
Tilgjengelig fra: 2009-10-09 Laget: 2009-10-09 Sist oppdatert: 2013-08-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Brun, AndersWestin, Carl-FredrikKnutsson, Hans

Søk i DiVA

Av forfatter/redaktør
Brun, AndersWestin, Carl-FredrikKnutsson, Hans
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 588 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf