liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sharp pointwise estimates for solutions of strongly elliptic second order systems with boundary data from L-P
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Tillämpad matematik.
2007 (engelsk)Inngår i: Applicable Analysis, ISSN 0003-6811, E-ISSN 1563-504X, Vol. 86, nr 7, s. 783-805Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The strongly elliptic system Aij partial derivative(2)u/partial derivative x(i)partial derivative x(j) = 0 with constant m x m matrix-valued coefficients A(ij) = A(ji) for a vector-valued functions u = (u(1),...,u(m)) in the half-space R-+(n) = {x = (x(1),..., x(n)) : x(n) > 0} as well as in a domain Omega subset of R-n with smooth boundary partial derivative Omega and compact closure Omega is considered. A representation for the sharp constant C-p in the inequality vertical bar u(x)vertical bar <= C(p)x(n)((1-n)/p) parallel to u vertical bar x(n)=0 parallel to p is obtained, where vertical bar center dot vertical bar is the length of a vector in the m-dimensional Euclidean space, x epsilon R-+(n), and parallel to center dot parallel to(p) is the L-p-norm of the modulus of an m-component vector-valued function, 1 <= p <= infinity. It is shown that lim vertical bar x - O-x vertical bar((n-1)/p) sup{vertical bar u(x)vertical bar : parallel to u vertical bar partial derivative Omega parallel to p <= 1} =C-p(O-x), x -> O-x where O-x is a point at partial derivative Omega nearest to x epsilon Omega, u is the solution of Dirichlet problem in Omega for the strongly elliptic system A(ij)partial derivative(2)u/partial derivative x(i)partial derivative x(j) = 0 with boundary data from [L-p(partial derivative Omega)](m), and C-p(O-x) is the sharp constant in the aforementioned inequality for u in the tangent space R-+(n) (O-x) to partial derivative Omega at O-x. As examples, Lame ' and Stokes systems are considered. For instance, in the case of the Stokes system, the explicit formula C-p = 2 Gamma((n + 2)/2)/pi((n+p-1)/(2p)) {Gamma((2p + n - 1)/(2p - 2))/Gamma((n + 1)p/(2p - 2))}((p-1)/p) is derived, where 1 < p < infinity.

sted, utgiver, år, opplag, sider
2007. Vol. 86, nr 7, s. 783-805
Emneord [en]
boundary L-P-data, pointwise estimates, strongly elliptic systems, lame and stokes systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-45929DOI: 10.1080/00036810601094337OAI: oai:DiVA.org:liu-45929DiVA, id: diva2:266825
Tilgjengelig fra: 2009-10-11 Laget: 2009-10-11 Sist oppdatert: 2017-12-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Maz´ya, Vladimir G.

Søk i DiVA

Av forfatter/redaktør
Maz´ya, Vladimir G.
Av organisasjonen
I samme tidsskrift
Applicable Analysis

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 309 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf