liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive eigenvalue computations using Newton's method on the Grassmann manifold
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap.ORCID-id: 0000-0003-2281-856X
2002 (engelsk)Inngår i: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 23, nr 3, s. 819-839Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We consider the problem of updating an invariant subspace of a large and structured Hermitian matrix when the matrix is modified slightly. The problem can be formulated as that of computing stationary values of a certain function with orthogonality constraints. The constraint is formulated as the requirement that the solution must be on the Grassmann manifold, and Newton's method on the manifold is used. In each Newton iteration a Sylvester equation is to be solved. We discuss the properties of the Sylvester equation and conclude that for large problems preconditioned iterative methods can be used. Preconditioning techniques are discussed. Numerical examples from signal subspace computations are given in which the matrix is Toeplitz and we compute a partial singular value decomposition corresponding to the largest singular values. Further we solve numerically the problem of computing the smallest eigenvalues and corresponding eigenvectors of a large sparse matrix that has been slightly modified.

sted, utgiver, år, opplag, sider
2002. Vol. 23, nr 3, s. 819-839
Emneord [en]
Conjugate gradient method, Differential geometry, Eigenvalue, Eigenvector, Grassmann manifold, Newton's method, Preconditioner, Signal subspace problem, Singular values and vectors, Sparse matrix, Toeplitz matrix
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-47142DOI: 10.1137/S0895479899354688OAI: oai:DiVA.org:liu-47142DiVA, id: diva2:268038
Tilgjengelig fra: 2009-10-11 Laget: 2009-10-11 Sist oppdatert: 2017-12-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Elden, Lars

Søk i DiVA

Av forfatter/redaktør
Elden, Lars
Av organisasjonen
I samme tidsskrift
SIAM Journal on Matrix Analysis and Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 392 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf