liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hole mobility and transport mechanisms in lambda-DNA
Linköpings universitet, Institutionen för fysik, kemi och biologi, Beräkningsfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Beräkningsfysik. Linköpings universitet, Tekniska högskolan.
2009 (engelsk)Inngår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 131, nr 15, s. 155102-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We have performed a study of charge transport in lambda-DNA using a recently developed model based on Marcus theory and dynamic Monte Carlo simulations. The model accounts for charge delocalization over multiple adjacent identical nucleobases. Such delocalized states are found to act as traps for charge transport and therefore have a negative impact on the charge carrier (hole) mobility. Both the electric field and temperature dependence of the mobility in lambda-DNA is reported in this paper. Furthermore, the detailed information produced by the simulation allow us to plot the progress of a hole propagating through the DNA sequence and this is used to identify the bottlenecks that limits the charge transport process.

sted, utgiver, år, opplag, sider
2009. Vol. 131, nr 15, s. 155102-
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-51773DOI: 10.1063/1.3244677OAI: oai:DiVA.org:liu-51773DiVA, id: diva2:277380
Tilgjengelig fra: 2009-11-18 Laget: 2009-11-17 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Monte Carlo Studies of Charge Transport Below the Mobility Edge
Åpne denne publikasjonen i ny fane eller vindu >>Monte Carlo Studies of Charge Transport Below the Mobility Edge
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Monte Carlo-studier av Laddningstransport under Mobilitetsgränsen
Abstract [en]

Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of hopping charge transport has increased greatly. The work documented in this thesis has been dedicated to the understanding of this charge transport below the mobility edge.

While analytical solutions exist for the transport coefficients in several simplified models of hopping charge transport, no analytical solutions yet exist that can describe these coefficients in most real systems. Due to this, Monte Carlo simulations, sometimes described as ideal experiments performed by computers, have been extensively used in this work.

A particularly interesting organic system is deoxyribonucleic acid (DNA). Besides its overwhelming biological importance, DNA’s recognition and self-assembly properties have made it an interesting candidate as a molecular wire in the field of molecular electronics. In this work, it is shown that incoherent hopping and the Nobel prize-awarded Marcus theory can be used to describe the results of experimental studies on DNA. Furthermore, using this experimentally verified model, predictions of the bottlenecks in DNA conduction are made.

The second part of this work concerns charge transport in conjugated polymers, the flagship of organic materials with respect to processability. It is shown that polaronic effects, accounted for by Marcus theory but not by the more commonly used Miller-Abrahams theory, can be very important for the charge transport process. A significant step is also taken in the modeling of the off-diagonal disorder in organic systems. By taking the geometry of the system from large-scale molecular dynamics simulations and calculating the electronic transfer integrals using Mulliken theory, the off-diagonal disorder is for the first time modeled directly from theory without the need for an assumed parametric random distribution.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2012. s. 70
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1425
Emneord
Monte Carlo simulation, charge transport, organic materials, conjugated polymers, DNA
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-74322 (URN)978-91-7519-967-2 (ISBN)
Disputas
2012-03-09, Planck, Fysikuset, Campus Valla, Linköpings universitet, Linköping, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2012-01-27 Laget: 2012-01-24 Sist oppdatert: 2019-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Jakobsson, MattiasStafström, Sven

Søk i DiVA

Av forfatter/redaktør
Jakobsson, MattiasStafström, Sven
Av organisasjonen
I samme tidsskrift
Journal of Chemical Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 237 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf