liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Novel application of imaging surface plasmon resonance for in situ studies of the surface exploration of marine organisms
Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
Newcastle University.
Newcastle University.
Vise andre og tillknytning
2009 (engelsk)Inngår i: BIOINTERPHASES, ISSN 1559-4106, Vol. 4, nr 4, s. 65-68Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The surface interactions of exploring cyprids of the barnacle Semibalanus balanoides were studied in situ using imaging surface plasmon resonance. It was demonstrated how the deposition of a proteinaceous adhesive could be followed in real time as the cyprids explored and temporarily attached to a surface. Furthermore, the amount of protein left on the surface when the cyprids moved on could be quantified. Clear differences were demonstrated between an oligo(ethyleneglycol) coated surface and a bare gold substrate. It is anticipated that this technique will be a valuable tool in the development of novel surface chemistries that can prevent biofouling.

sted, utgiver, år, opplag, sider
2009. Vol. 4, nr 4, s. 65-68
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-53839DOI: 10.1116/1.3274060ISI: 000273820500002OAI: oai:DiVA.org:liu-53839DiVA, id: diva2:292196
Tilgjengelig fra: 2010-02-05 Laget: 2010-02-05 Sist oppdatert: 2010-03-08
Inngår i avhandling
1. Hydrogel coatings for biomedical and biofouling applications
Åpne denne publikasjonen i ny fane eller vindu >>Hydrogel coatings for biomedical and biofouling applications
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Many applications share a substantial and yet unmet need for prediction and control of interactions between surfaces and proteins or living cells. Examples are blood-contacting biomaterials, biosensors, and non-toxic anti-biofouling coatings for ship hulls. The main focus of this thesis work has been the synthesis, characterization and properties of a group of coatings, designed for such applications. Many types of substrates, particularly plastics, were coated directly with ultrathin, hydrophilic polymer coatings, using a newly developed polymerization method initiated by short-wavelength ultraviolet light.

The thesis contains eight papers and an introduction aimed to provide a context for the research work. The common theme, discussed and analyzed throughout the work, has been the minimization of non-specific binding of proteins to surfaces, thereby limiting the risk of uncontrolled attachment of cells and higher organisms. This has mainly been accomplished through the incorporation of monomer units bearing poly(ethylene glycol) (PEG) side chains in the coatings. Such PEG-containing “protein resistant” coatings have been used in this work as matrices for biosensor applications, as blood-contacting inert surfaces and as antibiofouling coatings for marine applications, with excellent results. The properties of the coatings, and their interactions with proteins and cells, have been thoroughly characterized using an array of techniques such as infrared spectroscopy, ellipsometry, atomic force microscopy, surface plasmon resonance and neutron reflectometry. In addition, other routes to fabricate coatings with high protein resistance have also been utilized. For instance, the versatility of the fabrication method has enabled the design of gradients with varying electrostatic charge, affecting the protein adsorption and leading to protein resistance in areas where the charges are balanced.

This thesis also describes a novel application of imaging surface plasmon resonance for the investigation of the surface exploration behavior of marine biofouling organisms, in particular barnacle larvae. This technique allows for real-time assessment of the rate of surface exploration and the deposition of protein-based adhesives onto surfaces, a process which was previously very difficult to investigate experimentally. In this thesis, the method was applied to several model surface chemistries, including the hydrogels described above. The new method promises to provide insights into the interactions between biofouling organisms and a surface during the critical stages prior to permanent settlement, hopefully facilitating the development of antibiofouling coatings for marine applications.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2010. s. 74
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1302
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-54304 (URN)978-91-7393-435-0 (ISBN)
Disputas
2010-03-19, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 00:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-03-08 Laget: 2010-03-08 Sist oppdatert: 2020-02-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Andersson, OlofEkblad, TobiasLiedberg, Bo

Søk i DiVA

Av forfatter/redaktør
Andersson, OlofEkblad, TobiasLiedberg, Bo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 287 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf