liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model Quality: The Role of Prior Knowledge and Data Information
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
1991 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

The authors discuss the basic issues involved in the problem of estimating a model's reliability. In particular, the role of prior information is scrutinized. The modeling errors can be divided into two categories, namely, systematic/bias errors and variability/random errors. All serious system identification experiments contain a model validation step. For an unfalsified model, the bias error has not been found to be significantly larger than the random errors. Hence, the traditional, statistical way to provide estimated standard deviations for the model is relevant for unfalsified models. In the case of many unfalsified models, a sound scientific approach is to choose the most powerful unfalsified one. The definition of most powerful depends on the intended application. For example, in robust control design an unfalsified model can be said to be most powerful if the H∞ error bound is minimized. How this concept relates to minimizing the mean square errors is discussed. A number of questions for further research are identified.

sted, utgiver, år, opplag, sider
Linköping: Linköping University , 1991.
Serie
LiTH-ISY-I, ISSN 8765-4321 ; 1254
Emneord [en]
Control system synthesis, Identification, Modelling, Data information
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-55467OAI: oai:DiVA.org:liu-55467DiVA, id: diva2:316136
Tilgjengelig fra: 2010-04-30 Laget: 2010-04-30 Sist oppdatert: 2013-07-29

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Ljung, Lennart

Søk i DiVA

Av forfatter/redaktør
Ljung, Lennart
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf