liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MIND - Modelling in Industry for Increased Energy Efficiency and Reduced Greenhouse Gas Emissions
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
2010 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In industry, energy efficiency reduces system cost and emissions to the environment. Energy audits are carried out in industry to identify measures that would increase energy efficiency. However, the usual case is that low-cost measures are implemented while capital intensive measures receive less attention possibly due to, example, inadequate information available to study risks involved.

Decisions support tools have been identified as a means of supporting complex production related investment decision. The aim of this paper is to investigate profitability and potential global CO2 emission reduction of energy conversion investments in a small energy intensive industry by using an optimisation method as a decision support tool.

The investments are evaluated using consistent future energy market scenarios with interdependent parameters. An optimisation model is developed with reMIND optimisation tool which is used to optimise the system cost of each scenario. The reduction in system cost and global CO2 emissions of the new investments and results from sensitivity analysis are evaluated to determine the optimal investment solution.

In the report, it is established that optimisation methods provide a structured means of studying the risk involved in capital intensive investments. The optimisation results show that investment in a small-scale steam turbine combined heat and power production is a profitable and robust investment. The net reduction of global CO2 emission is substantial compared with the reference system. Furthermore, it is shown that biofuel policies alone may not make cost intensive biofuel investments attractive, further reduction in investment cost is required.

The energy savings and global CO2 emission reductions achieved in this study can play an important role in achieving the aims of the European Union to reduce greenhouse gas emissions by 20% and save 20 % of energy by the year 2020.

sted, utgiver, år, opplag, sider
2010. , s. 51
Emneord [en]
Optimisation, Energy efficiency, MIND modelling; Investment decision support
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-58042ISRN: LIU-IEI-TEK-A—10/00809—SEOAI: oai:DiVA.org:liu-58042DiVA, id: diva2:331727
Presentation
2010-05-31, A36, A-huset, Linkoping University, 10:15 (engelsk)
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2010-10-19 Laget: 2010-07-24 Sist oppdatert: 2010-10-19bibliografisk kontrollert

Open Access i DiVA

MIND - Modelling in Industry for Increased Energy Efficiency and Reduced Greenhouse Gas Emissions(3404 kB)6515 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 3404 kBChecksum SHA-512
2613feb1a0c62d394412b2acd00bf86746fcca01c0942fb39c42fb9c303fe0724889ec05f720f3fb016831da7dc97265ce8727eb9212facab313e91a53d41941
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Sasu-Boakye, Yaw
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 6515 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 411 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf