liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the Complexity of Discrete Feature Selection for Optimal Classification
Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem. Linköpings universitet, Tekniska högskolan. (ADIT)
Harvard University.
2010 (engelsk)Inngår i: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 32, nr 8, s. 1517-U1522Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Consider a classification problem involving only discrete features that are represented as random variables with some prescribed discrete sample space. In this paper, we study the complexity of two feature selection problems. The first problem consists in finding a feature subset of a given size k that has minimal Bayes risk. We show that for any increasing ordering of the Bayes risks of the feature subsets (consistent with an obvious monotonicity constraint), there exists a probability distribution that exhibits that ordering. This implies that solving the first problem requires an exhaustive search over the feature subsets of size k. The second problem consists of finding the minimal feature subset that has minimal Bayes risk. In the light of the complexity of the first problem, one may think that solving the second problem requires an exhaustive search over all of the feature subsets. We show that, under mild assumptions, this is not true. We also study the practical implications of our solutions to the second problem.

sted, utgiver, år, opplag, sider
IEEE Institute of Electrical and Electronics , 2010. Vol. 32, nr 8, s. 1517-U1522
Emneord [en]
Feature evaluation and selection; classifier design and evaluation; machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-58348DOI: 10.1109/TPAMI.2010.84ISI: 000278858600012OAI: oai:DiVA.org:liu-58348DiVA, id: diva2:343352
Merknad
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Jose M Pena and Roland Nilsson, On the Complexity of Discrete Feature Selection for Optimal Classification, 2010, IEEE Transaction on Pattern Analysis and Machine Intelligence, (32), 8, 1517-U1522. http://dx.doi.org/10.1109/TPAMI.2010.84 Tilgjengelig fra: 2010-08-13 Laget: 2010-08-11 Sist oppdatert: 2017-12-12

Open Access i DiVA

fulltekst(281 kB)416 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 281 kBChecksum SHA-512
1cee7bed21b8d60f601e9e17f9a07166f36a4e6d0936accc4538d5100d865b9cc6a1b8900454302fb71135812e10adf977e450f3a76c16367e0d83eadd014cf9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Pena, Jose M

Søk i DiVA

Av forfatter/redaktør
Pena, Jose M
Av organisasjonen
I samme tidsskrift
IEEE Transaction on Pattern Analysis and Machine Intelligence

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 416 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 213 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf