liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions
Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-1836-4200
Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.
Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.
2011 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We suggest here a least-change correction to available finite element (FE) solution.This postprocessing procedure is aimed at recoveringthe monotonicity and some other important properties that may not beexhibited by the FE solution. It is based on solvinga monotonic regression problem with some extra constraints.One of them is a linear equality-type constraint which models the conservativityrequirement. The other ones are box-type constraints, andthey originate from the discrete maximum principle.The resulting postprocessing problem is a large scale quadratic optimization problem. It is proved that the postprocessedFE solution preserves the accuracy of the discrete FE approximation.We introduce an algorithm for solving the postprocessingproblem. It can be viewed as a dual ascent method basedon the Lagrangian relaxation of the equality constraint.We justify theoretically its correctness.Its efficiency is demonstrated by the presented results of numerical experiments.

sted, utgiver, år, opplag, sider
Linköping: Linköping University, Electronic Press , 2011. , s. 28
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 8
Emneord [en]
Constrained monotonic regression, Large scale quadratic optimization, Lagrangian relaxation, Dual ascent method, Finite element solution, Accuracy analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-67516ISRN: LiTH-MAT-R–2011/08–SEOAI: oai:DiVA.org:liu-67516DiVA, id: diva2:410865
Tilgjengelig fra: 2011-04-19 Laget: 2011-04-15 Sist oppdatert: 2015-06-02bibliografisk kontrollert

Open Access i DiVA

fulltekst(1615 kB)173 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1615 kBChecksum SHA-512
ecc04b04434d43123e829a4473095227dc106afded505129d1183573fb9d3b2800d11245cfdee7fbc7f6dcfc8f9fd16912b502077c945d8210301047dcf3e4e5
Type fulltextMimetype application/pdf

Personposter BETA

Burdakov, Oleg

Søk i DiVA

Av forfatter/redaktør
Burdakov, Oleg
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 173 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 181 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf