liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Multi-Parametric Maximum Flow Characterization of the Open-Pit Scheduling Problem
Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-2094-7376
Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska högskolan.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We consider the problem of finding an optimal mining schedule for an openpit during a number of time periods, subject to a mining capacity restriction for each time period. By applying Lagrangian relaxation to the capacities, a multi-parametric formulation is obtained. We show that this formulation can be restated as a maximum flow problem in a time-expanded network. This result extends a well-known result of Picard from 1976 for the open-pit design problem, that is, the single-period case, to the case of multiple time periods.

Emneord [en]
Open-pit mining, scheduling, maximum flow, minimum cut, Lagrangian relaxation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-70841OAI: oai:DiVA.org:liu-70841DiVA, id: diva2:442013
Tilgjengelig fra: 2011-09-20 Laget: 2011-09-20 Sist oppdatert: 2013-08-30bibliografisk kontrollert
Inngår i avhandling
1. Mathematical Optimization Models and Methods for Open-Pit Mining
Åpne denne publikasjonen i ny fane eller vindu >>Mathematical Optimization Models and Methods for Open-Pit Mining
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Open-pit mining is an operation in which blocks from the ground are dug to extract the ore contained in them, and in this process a deeper and deeper pit is formed until the mining operation ends. Mining is often a highly complex industrial operation, with respect to both technological and planning aspects. The latter may involve decisions about which ore to mine and in which order. Furthermore, mining operations are typically capital intensive and long-term, and subject to uncertainties regarding ore grades, future mining costs, and the market prices of the precious metals contained in the ore. Today, most of the high-grade or low-cost ore deposits have already been depleted, and to obtain sufficient profitability in mining operations it is therefore today often a necessity to achieve operational efficiency with respect to both technological and planning issues.

In this thesis, we study the open-pit design problem, the open-pit mining scheduling problem, and the open-pit design problem with geological and price uncertainty. These problems give rise to (mixed) discrete optimization models that in real-life settings are large scale and computationally challenging.

The open-pit design problem is to find an optimal ultimate contour of the pit, given estimates of ore grades, that are typically obtained from samples in drill holes, estimates of costs for mining and processing ore, and physical constraints on mining precedence and maximal pit slope. As is well known, this problem can be solved as a maximum flow problem in a special network. In a first paper, we show that two well known parametric procedures for finding a sequence of intermediate contours leading to an ultimate one, can be interpreted as Lagrangian dual approaches to certain side-constrained design models. In a second paper, we give an alternative derivation of the maximum flow problem of the design problem.

We also study the combined open-pit design and mining scheduling problem, which is the problem of simultaneously finding an ultimate pit contour and the sequence in which the parts of the orebody shall be removed, subject to mining capacity restrictions. The goal is to maximize the discounted net profit during the life-time of the mine. We show in a third paper that the combined problem can also be formulated as a maximum flow problem, if the mining capacity restrictions are relaxed; in this case the network however needs to be time-expanded.

In a fourth paper, we provide some suggestions for Lagrangian dual heuristic and time aggregation approaches for the open-pit scheduling problem. Finally, we study the open-pit design problem under uncertainty, which is taken into account by using the concept of conditional value-atrisk. This concept enables us to incorporate a variety of possible uncertainties, especially regarding grades, costs and prices, in the planning process. In real-life situations, the resulting models would however become very computationally challenging.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2011. s. 38
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1396
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-70844 (URN)978-91-7393-073-4 (ISBN)
Disputas
2011-10-18, Alan Turing, hus E, Campus Valla, Linköpings universitet, Linköping, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2011-09-20 Laget: 2011-09-20 Sist oppdatert: 2013-08-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Amankwah, HenryLarsson, TorbjörnTextorius, Björn

Søk i DiVA

Av forfatter/redaktør
Amankwah, HenryLarsson, TorbjörnTextorius, Björn
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 448 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf