liu.seSearch for publications in DiVA

RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Optimal Polynomial Regression Models by using a Genetic AlgorithmPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2011 (engelsk)Inngår i: Proceedings of the Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering / [ed] Y. Tsompanakis & B.H.V. Topping, Stirlingshire: Civil-Comp Press , 2011, artikkel-id 39Konferansepaper, Publicerat paper (Annet vitenskapelig)
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Stirlingshire: Civil-Comp Press , 2011. artikkel-id 39
##### Serie

Civil-Comp Proceedings, E-ISSN 1759-3433 ; 97
##### Emneord [en]

Polynomial regression model, Metamodeling, Design of experiments (DoE)
##### HSV kategori

##### Identifikatorer

URN: urn:nbn:se:liu:diva-72350DOI: 10.4203/ccp.97.39OAI: oai:DiVA.org:liu-72350DiVA, id: diva2:459271
##### Konferanse

The Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Conference, 6-9 September, Chania, Crete, Greece
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt435",{id:"formSmash:j_idt435",widgetVar:"widget_formSmash_j_idt435",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt442",{id:"formSmash:j_idt442",widgetVar:"widget_formSmash_j_idt442",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt448",{id:"formSmash:j_idt448",widgetVar:"widget_formSmash_j_idt448",multiple:true});
##### Prosjekter

MERATilgjengelig fra: 2011-11-25 Laget: 2011-11-25 Sist oppdatert: 2019-12-29bibliografisk kontrollert
##### Inngår i avhandling

Different regression models are commonly used to approximate the behavior of an unknown response in a given design domain. The regression models are usually obtained from a design of experiments, the corresponding responses and the constitution of the regression model. In this work a new approach is proposed, where the constituents of a polynomial regression model are of arbitrary order. A genetic algorithm is used to find the optimal terms to be included in the so-called optimal polynomial regression model. The objective for the genetic algorithm is to minimize the sum of squared errors of the predicted responses. In practice the genetic algorithm generates an optimal set of exponents of the design variables for the specified number of terms in the regression model, where each term is a product of a regression coefficient and the design variables. Several example problems are presented to show the performance and accuracy of the optimal polynomial regression model. Results show an improved performance for optimal polynomial regression models compared to traditional regression models.

1. Robustness Analysis of Residual Stresses in Castings$(function(){PrimeFaces.cw("OverlayPanel","overlay459301",{id:"formSmash:j_idt774:0:j_idt778",widgetVar:"overlay459301",target:"formSmash:j_idt774:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1214",{id:"formSmash:j_idt1214",widgetVar:"widget_formSmash_j_idt1214",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1267",{id:"formSmash:lower:j_idt1267",widgetVar:"widget_formSmash_lower_j_idt1267",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1268_j_idt1270",{id:"formSmash:lower:j_idt1268:j_idt1270",widgetVar:"widget_formSmash_lower_j_idt1268_j_idt1270",target:"formSmash:lower:j_idt1268:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});