liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning based compression for real-time rendering of surface light fields
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan. (Computer Graphics and Image Processing)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan. (Computer Graphics and Image Processing)
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan. (Computer Graphics and Image Processing)ORCID-id: 0000-0002-7765-1747
2013 (engelsk)Inngår i: Siggraph 2013 Posters, ACM Press, 2013Konferansepaper, Poster (with or without abstract) (Annet vitenskapelig)
Abstract [en]

Photo-realistic image synthesis in real-time is a key challenge in computer graphics. A number of techniques where the light transport in a scene is pre-computed, compressed and used for real-time image synthesis have been proposed. In this work, we extend this idea and present a technique where the radiance distribution in a scene, including arbitrarily complex materials and light sources, is pre-computed using photo-realistic rendering techniques and stored as surface light fields (SLF) at each surface. An SLF describes the full appearance of each surface in a scene as a 4D function over the spatial and angular domains. An SLF is a complex data set with a large memory footprint often in the order of several GB per object in the scene. The key contribution in this work is a novel approach for compression of surface light fields that enables real-time rendering of complex scenes. Our learning-based compression technique is based on exemplar orthogonal bases (EOB), and trains a compact dictionary of full-rank orthogonal basis pairs with sparse coefficients. Our results outperform the widely used CPCA method in terms of storage cost, visual quality and rendering speed. Compared to PRT techniques for real-time global illumination, our approach is limited to static scenes but can represent high frequency materials and any type of light source in a unified framework.

sted, utgiver, år, opplag, sider
ACM Press, 2013.
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-92673DOI: 10.1145/2503385.2503434ISBN: 978-1-4503-2342-0 (tryckt)OAI: oai:DiVA.org:liu-92673DiVA, id: diva2:621592
Konferanse
ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2013; Anaheim, CA; United States
Prosjekter
VPS
Forskningsfinansiär
Swedish Foundation for Strategic Research Tilgjengelig fra: 2013-05-15 Laget: 2013-05-15 Sist oppdatert: 2015-09-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Miandji, EhsanKronander, JoelUnger, Jonas

Søk i DiVA

Av forfatter/redaktør
Miandji, EhsanKronander, JoelUnger, Jonas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 230 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf