liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-9566-041X
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0001-6235-7038
2014 (engelsk)Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 47, nr 34, s. 345102-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The present research is devoted to understanding the mechanism and causes of variation in the piezoelectric potential generated from vertically aligned zinc oxide (ZnO) nanorods (NRs), which were grown on a conductive textile fabric as an alternative substrate by using the aqueous chemical growth method. The piezoelectric voltage was harvested from vertically aligned ZnO NRs having different physical parameters by using atomic force microscopy in contact mode and the variation in the generated piezoelectricity was investigated. The generated output potential indicates that different physical parameters such aspect ratio, crystal size and lattice internal crystal strain have a strong influence on the piezoelectric properties of vertically aligned ZnO NRs, which were grown on a textile fabric. Presented results indicate that textiles can be used as an alternative substrate just like the other conventional substrates, because our results are similar/better than many reported works on conventional substrates.

sted, utgiver, år, opplag, sider
Institute of Physics Publishing (IOPP), 2014. Vol. 47, nr 34, s. 345102-
Emneord [en]
conductive textile fabric; ZnO nanorods; aqueous chemical growth method; mechanical and piezoelectric properties
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-110270DOI: 10.1088/0022-3727/47/34/345102ISI: 000340236700008OAI: oai:DiVA.org:liu-110270DiVA, id: diva2:744055
Tilgjengelig fra: 2014-09-05 Laget: 2014-09-05 Sist oppdatert: 2024-01-08bibliografisk kontrollert
Inngår i avhandling
1. Analysis of the piezoelectric and current transport properties of zinc oxide nanostructures grown on fiber
Åpne denne publikasjonen i ny fane eller vindu >>Analysis of the piezoelectric and current transport properties of zinc oxide nanostructures grown on fiber
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

It seems that nowadays the world is becoming as a small village due to the advancement in communication devices technology. These devices are playing an important role in the wellbeing of our life as almost each and every person is utilizing at least one of these devices. These devices consume energy and with our increased use of technology, we are faced  with energy crises. Therefore, the research community is keen in trying to explore alternative resources. One possibility is to search for the alternative resources from our environment. The attempt in this thesis was to utilize the piezoelectric properties by harvesting electrical energy from nanostructures. By utilizing the piezoelectric property of some materials, mechanical energy can be harvested as electrical output. It is worth mention that the ambient mechanical energy is the most available source of energy around us. Hence it is of interest to utilize it to develop future smart devices having the self-powered property. In this connection various experimental and mathematical techniques have been utilized for achieving this target.

In this thesis zinc oxide (ZnO) nanostructures grown on textile substrates were the material. The use of textile as substrate is quite unique property of the presented work. Since textile is an essential and fundamental component of our everyday lives, therefore the use of textile as substrate can pave the way for the fabrication of novel self-powered devices. As in comparison with conventional and expensive substrates textile is very economical, lightweight, highly flexible, recyclable, reproducible, disposable, wearable and washable.

I started my research work by integrating ZnO nanorods based nanogenerator on conductive textile fiber for the analysis of piezoelectric properties of ZnO nanorods. The acceptance of my work among the research community encouraged me to continue with it in order to improve the performance of the fabricated device. It is well known that piezoelectricity is a linear electromechanical coupling of the material in which mechanical energy is converted into electrical energy. Therefore, the piezoelectric properties of ZnO nanorods were investigated with regard to different physical parameters. In the electromechanical phenomena the analysis of the direct and the converse piezoelectric effect is also critical if conductive textile is used as a substrate. Therefore analysis of the direct and the converse piezoelectric effect was performed for ZnO nanowires grown on conductive textile fiber by using the nanoindentation method.

Since the morphology of ZnO nanostructures can have an influence on the piezoelectric properties, the energy harvesting properties of ZnO nanoflowers were investigated and the achieved results confirmed that morphology has a strong influence on the piezoelectric properties. In addition, since there is an interest to generate a direct current (DC) piezoelectricity, a Schottky junction fabricated to one side of the nanogenerator material is needed. Therefore, ZnO nanorods based Schottky diode (Cu/ZnO) on textile fabric was fabricated and investigated. Moreover, frequency dependence electrical characterization was performed for analysis of current-transport properties of another Schottky diode (Au/ZnO) for understanding the carrier flow at the interface of the metal-semiconductor. Nevertheless, the consistency and stability of the constructed devices (ZnO nanogenerators and Schottky diodes) need some additional work to overcome these problems to achieve commercial realization of these devices in the future.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2014. s. 140
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1622
Emneord
Aqueous chemical growth method; Zinc Oxide nanostructures; Textile fabric; Mechanical and Piezoelectric properties; Current-transport properties of Schottky diodes
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-110894 (URN)978-91-7519-234-5 (ISBN)
Disputas
2014-10-29, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2014-09-26 Laget: 2014-09-26 Sist oppdatert: 2024-01-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Khan, AzamHussain, MushtaqueNur, OmerWillander, Magnus

Søk i DiVA

Av forfatter/redaktør
Khan, AzamHussain, MushtaqueNur, OmerWillander, Magnus
Av organisasjonen
I samme tidsskrift
Journal of Physics D: Applied Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 306 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf